


1

1 WAKE FUNCTIONS

A whole beam or a whole bunch can oscillate in many modes, like oscillating rigidly

about the center of the beam pipe, breathing radially at a certain frequency with the center

not moving at all, the horizontal breathing 90◦ out of phase with the vertical breathing,

etc. These are eigenmodes in an eigenfrequency, in which every particle in the beam is

participating. We call these collective modes. If the amplitude of oscillation continues to

grow, the beam becomes unstable. These modes are excited and driven by the discontinuities

of the beam pipe or mechanically by kicker, etc.

A beam particle traveling along a “smooth” and perfectly conducting cylindrical beam

pipe will have its pancake shape electromagnetic fields truncated by the beam pipe.∗ If the

beam pipe is not smooth, however, electromagnetic fields will be trapped and experienced

by beam particles following. These are called wakefields.
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Figure 1: Schematic drawing of of a witness particle at a distance −y behind the source particle
in a beam. Both particles are traveling along the s direction with the same longitudinal velocity �v.

We make two approximations:

(1) Rigid bunch approximation: the wakefields do not affect the rigidity of the beam during

its transversal of the discontinuity. What we mean is that the bunch motion will not be

affected during its passage and the effect of the wake is considered to be a kick after the

passage.

(2) Impulse approximation: we care about only the impulse

∆�p =

∫ ∞

−∞
dt �F =

∫ ∞

−∞
dt q( �E + �v × �B) (1.1)

impacted on the witness particle carrying charge q traveling at longitudinal velocity v during

the discontinuity transversal, but not the force �F nor separately the electric field �E and

magnetic flux density �B.

Besides the transverse positions of the source and witness particles, the impulse depends

only on the longitudinal distance y between them. Panofsky-Wenzel theorem [1] gives the

∗Not simply truncation for a non-cylindrical beam pipe or for an off-axis beam.
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relation between the longitudinal component of the impulse and the transverse component:†

∂

∂y
∆�p⊥ = �∇⊥∆ps . (1.2)

For a cylindrically symmetric vacuum chamber, a source particle at an offset a from the axis

of the beam pipe can be expanded into cylindrical harmonics, and such an expansion is also

valid for the impulse. We have

v∆�p⊥ = −qImWm(y)mrm−1

(
r̂ cosmθ − θ̂ sinmθ

)
,

v∆ps = −qImW ′
m(y)rm cosmθ ,

(1.3)

where (r, θ) are the transverse coordinates of the witness particle carrying charge q. The

source particle carrying charge e is at coordinates (a, 0) and is traveling in the s-direction.‡

Its mth electric moment is represented by Im = eam. Here, Wm(y) is called the wake

function§ of the mth azimuthal harmonic and is a function of y only. Sometimes it is also

expressed as a function of t = −v/y, the time lag of the witness particle. Strictly speaking,

Eq. (1.3) is valid only at the ultra-relativistic limit or when the particle velocity v → c.

The longitudinal wake W ′
m(y) = dWm(y)/dy has the dimension volts/coulomb/m2m while

the transverse wake has the dimension volts/coulomb/m2m−1. Schematic drawings of Wm(y)

and W ′
m(y) are shown in Fig. 2.

Figure 2: The longitudinal wake W ′
m(y) is positive definite when |y| is small, while the transverse

wake Wm(y) starts out from zero and goes negative as |y| increases. They behave like cosine and
sine, respectively, and vanish when y > 0 because of causality.

†Here, y is measured from the source particle in the forward direction. Thus, when the witness particle
is behind the witness particle, y ≤ 0. On the other hand, if one prefers to define y ≥ 0 as the distance the
witness particle is behind the source particle, there will be a negative sign before the partial derivative in
Eq. (1.2), and one needs to define W ′

m(y) ≡ −dWm(y)/dy in Eq. (1.3) below.
‡Here, we follow the notation convention of x and z denoting, respectively, horizontal and vertical offsets

from the closed orbit, while y measuring the distance the witness particle ahead of the source particle, both
traveling in the s-direction.

§Wake function is a Green’s function because the source is a δ-function.
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2 COUPLING IMPEDANCES

Beam particles form a current, of which the component with frequency ω/(2π) is I(s, t) =

Îejω(t−s/v), where Î may be complex. This current component at location s and time t will

be affected by the wake of the preceding beam particles at s′ that pass the point s at time

t−(s′−s)/v with the charge element I[s, t−(s′−s)/v]ds′/v. The total accelerating voltage

seen (or energy gained per unit test charge) will be

V (s, t) = −
∫ ∞

s

I

(
s, t− s′ − s

v

)
W ′

0(s− s′)
ds′

v

= −
∫ 0

−∞
I
(
s, t+

y

v

)
W ′

0(y)
dy

v

= −
∫ ∞

−∞
Îejω[t+y/v−s/v]W ′

0(y)
dy

v

= −I(s, t)
∫ ∞

−∞
ejωy/vW ′

0(y)
dy

v
. (2.1)

Thus, we can identify the longitudinal coupling impedance of the vacuum chamber as

Z
‖
0 (ω) =

∫ ∞

−∞
ejωy/vW ′

0(y)
dy

v
. (2.2)

This definition is the same as the ordinary impedance in a circuit. However, we have here

much more than in a circuit because the current distribution possesses higher azimuthal

multiples. In the same way, we define the transverse impedance

Z⊥
1 (ω) =

−j
β

∫ ∞

−∞
ejωy/vW1(z)

dy

v
. (2.3)

In Eqs. (2.1) and (2.3), the lower limits of integration have been extended to −∞, because

the wake functions vanish when y > 0. It is evident that we can also compute the impedances

by integrating the longitudinal wake force F
‖
0 or transverse wake force F⊥

1 at the frequency

ω over one turn according to

Z
‖
0 (ω) = − 1

qI0

∫ C

0

F
‖
0 (s, t) ds , Z⊥

1 (ω) =
j

qβI0a

∫ C

0

F⊥
1 (s, t) ds , (2.4)

where C = 2πR is the circumferential length of the accelerator ring. Since Re Z⊥
1 (ω) > 0

implies an energy loss, the force leads the displacement I0a by π
2
, and hence the factor j in

the definition of Z⊥
1 above. The Lorentz factor β = v/c is a convention. Inversely, the wake

functions can be written in terms of the impedances:

Wm(y) =
jβ

2π

∫ ∞

−∞
Z⊥
m(ω)e−jωy/vdω , W ′

m(y) =
1

2π

∫ ∞

−∞
Z‖
m(ω)e−jωy/vdω , (2.5)
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where the path of integration in both cases is below all the singularities of the impedances

so as to guarantee causality. In terms of the time variable t = −y/v, the impedances can be

rewritten in terms of the wake function as

Z‖
m(ω) =

∫ ∞

−∞
e−jωtW ′

m(t)dt , Z⊥
m(ω) =

−j
β

∫ ∞

−∞
e−jωtWm(t)dt , (2.6)

where∗ Wm(t) is obtained from Wm(y) by the substitution y = −vt. The inverse are

Wm(t) =
jβ

2π

∫ ∞

−∞
Z⊥
m(ω)ejωtdω , W ′

m(t) =
1

2π

∫ ∞

−∞
Z‖
m(ω)ejωtdω . (2.7)

Note that the longitudinal wake is mostly the monopole (m = 0) wake W ′
0 and the

transverse wake is mostly the dipole (m = 1) wake W1, if the beam pipe cross section is close

to circular and the particle path is close to the pipe axis. Thus, we are interested mostly in

Z
‖
0 and Z⊥

1 only. For convenience, they may be written simply as Z‖ and Z⊥. They have

the dimensions of Ohms and Ohms/length, respectively. The impedances have the following

properties:†

1. Z‖
m(−ω) = [Z‖

m(ω)]∗ and Z⊥
m(−ω) = −[Z⊥

m(ω)]∗ . (2.8)

2. Z‖
m(ω) and Z⊥

m(ω) are analytic with poles only in the upper half ω-plane. (2.9)

3. Z‖
m(ω) =

ω

c
Z⊥
m(ω) , (2.10)

for cylindrical geometry and each azimuthal harmonic including m = 0 .

4. ReZ‖
m(ω) ≥ 0 for all ω and Re Z⊥

m(ω) � 0 when ω � 0 , (2.11)

if the beam pipe has the same entrance cross section and exit cross section.

5.

∫ ∞

0

dω ImZ⊥
m(ω) = 0 and

∫ ∞

0

dω
ImZ‖

m(ω)

ω
= 0 in most cases. (2.12)

The first follows because the wake functions are real, the second from the causality of the

wake functions, and the third from the Panofsky-Wenzel theorem between transverse and

longitudinal electromagnetic forces. ReZ‖
m(ω) ≥ 0 is the result of the fact that the total

energy of a particle or a bunch cannot be increased after passing through a section of the

vacuum chamber where there are no accelerating external forces, while ReZ⊥
m(ω) ≥ 0 when

ω > 0 follows from the Panofsky-Wenzel theorem. The fifth property follows from the

assumption that Wm(0) = 0.

Below are some examples of impedances:

∗Obviously, W ′
m(t) ≡ −v−1dWm(t)/dt.

†Although Z⊥
0 may not have any physical meaning, it is a well-defined quantity mathematically.
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1. Resonance

A resonance can be represented, at least near the resonant frequency ωr, by a parallel RLC-

circuit, giving the usual impedance

Z(ω) =
R

1 + jQ

(
ω

ωr
− ωr
ω

) , (2.13)

where ωr = (LC)−1/2 is the resonant frequency, and Q = R
√
L/C is the quality factor. We

can generalize this to the parallel impedance of the mth harmonic:

Z‖
m(ω) =

Rm,sh

1 + jQ

(
ω

ωr
− ωr
ω

) , (2.14)

where the resonant frequency is ωr = (LmCm)−1/2 and quality factor is Q = Rm,sh

√
Cm/Lm.

Here, for the mth multipole, the shunt impedance Rm,sh is in Ohms/m2m, the inductance

in henry/m2m, and the capacitance in farad-m2m. The transverse impedance can now be

obtained from the Panofsky-Wenzel theorem:

Z⊥
m(ω) =

c

ω

Rm,sh

1 + jQ

(
ω

ωr
− ωr
ω

) . (2.15)

We observe that

(1) For small Q � 1, the impedances represent very broad resonances and will be used when

the impedances are broadband. On the other hand, for large Q, they represent very sharp

resonances.

(2) These impedances have two poles in the upper ω-plane. When Q is large, the impe-

dances possess two narrow peaks near ω = ωr[±
√|1 − 1/(4Q2)| + j/(2Q)]. The properties

Z
‖
m(−ω) = [Z

‖
m(ω)]∗ and Z⊥

m(−ω) = −[Z⊥
m(ω)]∗ are evident.

2. Resistive wall

When the walls of the metallic beam pipe are not perfectly conducting, there will be a

finite electric field E at the walls, which decreases exponentially inside the walls of the pipe.

Neglecting displacement current, which is important only at very high frequencies,‡ two of

‡Displacement current can be neglected at frequencies ω  σc/ε0 ≈ σcZ0c ≈ 1.5 × 1017 Hz, where the
conductivity of stainless steel σc = 1.35× 106 (Ω-m)−1 is assumed.
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Maxwell equations are

�∇× �E = −µ∂
�H

∂t
, �∇× �H = �J = σc �E , (2.16)

where σc is the conductivity and µ the permeability. Combining the two, we obtain

∇2 �E = µσc
∂ �E

∂t
, ∇2 �H = µσc

∂ �H

∂t
. (2.17)

Let x > 0 be the distance into the metallic walls and y be the direction along the wall. With

the time dependency ejωt,

d2Ey

dx2
= jωµσcEy ,

d2Hz

dx2
= jωµσcHz . (2.18)

The solution is

Ey =Ey0e
−[1+j sgn(ω)]x/δskin , Hz =Hz0e

−[1+j sgn(ω)]x/δskin , Ey =
1 + j sgn(ω)

σcδskin
Hz , (2.19)

where

δskin =

√
2

|ω|µσc (2.20)

is the skin depth at frequency ω or the penetration of field into the walls of the beam pipe,

Ey0 and Hz0 are the electric and magnetic field at the surface of the pipe wall. The resistive

loss portion of the impedance for a beam pipe of radius b is

ReZ‖
0 ≈ 2πR

2πb δskinσc
, (2.21)

and this is exactly the correct result if we follow a more accurate solution of the Maxwell

equation by integrating into the walls of the beam pipe. Including the imaginary part, the

total resistive wall impedance is, according to Eq. (2.19),

Z
‖
0 = [1 + j sgn(ω)]

R

b δskinσc
. (2.22)

The higher harmonic longitudinal impedance can be obtained in the same way by offset-

ting the beam and solving for the electric field at the wall. The distribution of longitudinal

electric field on the surface of the beam pipe now depends on the azimuthal angle. Know-

ing the dipole longitudinal impedance, the transverse impedance is then obtained from the

Panofsky-Wenzel theorem:

Z⊥
1 = [1 + j sgn(ω)]

2cR

ωb3δskinσc
. (2.23)
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Figure 3: Schematic drawing of the transverse broadband and narrowband impedances. The
real parts are shown in solid lines and the imaginary parts as dashed lines. A broadband and a
narrowband impedance are represented by peaks in the real parts. The resistive wall impedance
which peaks in the low-frequency region is included in the Re Z⊥

1 for the broadband. The space
charge impedance is frequency independent. The schematic drawing of Re Z

‖
0/n and ImZ

‖
0/n

should look similar.

Notice that

Z⊥
1 =

2c

b2
Z

‖
0

ω
, (2.24)

which looks like, but in fact is not the Panofsky-Wenzel relation. The two impedances belong

to different azimuthal harmonics and should not have any relationship. Nevertheless, this

relation has been used extensively as a convenient estimate of the transverse impedance

from the longitudinal impedance, and sometimes good estimates are obtained. However, the

space-charge impedances that we are going to discuss next violate this relation. The resistive-

wall impedance usually will not be strong enough to inflict severe instability of a single

bunch. However, the transverse resistive-wall impedance reaches a very large value at low

frequencies.§ The betatron line at the smallest negative frequency acts like a sharp resonance

and couples the transverse motion of all the bunches in the ring. This multi-bunch instability

occurs in nearly every ring and is damped via a transverse mode damper and/or octupoles

to supply a spread in betatron tunes. A schematic drawing of the transverse impedance of

a ring is shown in Fig. 3, including narrowband resonance, resistive wall impedance, and

space-charge resonance.

§Eq. (2.23) shows that Z⊥
1 → ±∞ as ω → ±0. More rigorous consideration shows that Z⊥

1 eventually
drops to zero when ω = 0.
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3. Space-charge impedance

Consider a particle beam with linear density λ(s, t) traveling in the positive s direction with

velocity v inside a cylindrical beam pipe of radius b with infinitely-conducting walls. The

beam is assumed to be rigid; therefore λ(s, t) = λ(s− vt). We also assume that the beam is

uniformly distributed transversely within a radius a which varies very slowly longitudinally.

We are interested in the electric field Es seen by the beam particles at the axis of the beam

pipe. The radial electric field Er and azimuthal magnetic flux density Bφ at a radial distance

r are given by

Er =




eλr

2πε0a2

eλ

2πε0r

Bφ =




µ0eλvr

2πa2
r ≤ a ,

µ0eλv

2πr
r ≥ a ,

(2.25)

where eλv is the beam current. Let us invoke Faraday’s law

�∇× �E = − ∂

∂t
�B , (2.26)

or in the integral form, ∮
�E ·d�- = − ∂

∂t

∮
�B ·d �A . (2.27)

In above, the closed path of integration of the electric field �E is along two radii of the beam

pipe at s and s+ ds together with two length elements at the beam axis and the wall of the

beam pipe, as illustrated in Fig. 4. The area of integration of the magnetic flux density �B

v

a

b

s+dss

Es

Figure 4: (color) Derivation of the space-charge longitudinal electric field Es experienced by a
beam particle in a beam of radius a in an infinitely conducting beam pipe of radius b.
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is the area enclosed by the closed path. Now, the left side of Eq. (2.27) becomes

L. S. = Esds+
eλ(s+ds−vt)

2πε0

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
− Ewds− eλ(s−vt)

2πε0

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
,

(2.28)

where Ew is the electric field at the wall of the beam pipe, while the right side

R. S. = − ∂

∂t

(
µ0eλ(s−vt)v

2π

)[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
ds . (2.29)

Assumption has been made that the opening angle 1/γ of the radial electric field is small

compared with the distance - over which the linear density changes appreciably, or b/γ  -.

Here, γ = E/(mc2), where E is the energy and m is the rest mass of the beam particle. In

terms of the the squared-bracketed expressions in Eqs. (2.28) and (2.29), we can define

g0 = 2

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
= 1 + 2 ln

b

a
, (2.30)

which is a geometric factor depending on the geometry of the beam and the beam pipe,

and it will deviate from Eq. (2.30) if we relax, for example, the restriction of the transverse

uniformity of the particle distribution. Combining the above, we arrive at

Es +
eg0
4πε0

∂λ

∂s
= v2

eµ0g0
4π

∂λ

∂s
+ Ew , (2.31)

or

Es = − eg0
4πε0γ2

∂λ

∂s
+ Ew , (2.32)

of which the first term on the right is the space-charge force experienced by a particle in

a beam. Here, we see the near cancellation of the electric and magnetic forces. In the

reduction from Eq. (2.30) to Eq. (2.32), use has been made of the relation ε0µ0 = c−2.

The discontinuities of vacuum chamber are mostly inductive at low frequencies with total

inductance L, leading to an induced wall electric field

Ew =
L

2πR

dIw
dt

=
eβ2c2L

2πR

∂λ

∂s
, (2.33)

where Iw is the image current at the surface of the pipe wall. The total longitudinal electric

field at the pipe axis is therefore

Es = −e
[

g0
4πε0γ2

− β2c2L

2πR

]
∂λ

∂s
. (2.34)

The linear distribution λ consists of a uniform part λ0 which has no s variation and a

perturbed part λ1. The latter can be considered as a longitudinal harmonic wave,

λ1(s, t) ∝ ej(Ωct−ns/R) , (2.35)



10

where the collective frequency of the wave¶ Ωc ≈ nω0 and ω0 = βc/R is the revolution

frequency. The corresponding current is I1 = evλ1, and

∂λ1
∂s

= −jnλ1
R

= −jnI1
evR

. (2.36)

The total voltage drop in one revolution on the beam is ∆U = −2πREs, giving a longitudinal

impedance per harmonic

Z
‖
0

n
=

∆U

nI1
= −j

[
g0Z0

2βγ2
− ω0L

]
, (2.37)

where Z0 =
√
µ0/ε0 = 1/(ε0c) = 376.73 Ω is called the vacuum impedance.

The longitudinal impedance per harmonic is frequency independent and rolls off only

at very high frequencies when the wavelength drops to ∼ a/γ. As an example, this amounts

to a few tens of GHz for the Fermilab Main Injector. This space-charge force lengthens the

bunch below transition and shortens it above transition and is the main cause of instability

just after crossing transition. Typical values of the space-charge impedance at transition

energy are listed in Table I.

Table I: Typical space-charge impedance at γ = γT .

AGS RHIC Fermilab BST Fermilab MI KEK PS

γT 8.7 22.5 5.4 20.4 6.8

|Z‖
0/n| (Ω) 13 1.5 30 2.3 20

To compute the transverse space-charge impedance, let us shift the beam in the x

direction by an amount x0, giving{
x→ x′ = x− x0
r → r′ =

√
x′2 + y2 ,

where x′ and r′ are measured from center of beam while x and r are measured from center

of beam pipe as illustrated in the left plot of Fig. 5. The current density is transformed

from i0(r) =
I0
πa2

Θ(a− r) to i(r, ψ) = i0(r
′) = i0(r) + i1(r, ψ) , (2.38)

where the dipole current density is, according to the right plot of Fig. 5,

i1(r, ψ) = x0
di0(r

′)
dx0

∣∣∣∣
x0=0

=
I0
πa2

x0
x

r
δ(a− r) =

I0
πa2

x0 cosψ δ(a− r) . (2.39)

¶It will be shown later that Ωc differs from nω0 by the synchrotron frequency ωs which is small and the
synchrotron tune shift as a result of impedance which is small also.
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Let us compute the magnetic flux density induced by this dipole ring current at the center

of the beam. Consider the current element at ψ flowing longitudinally into the area element

adψdr. Magnetic flux density at the center of the beam in z direction is

∆Bz =
µ0i1(a, ψ) adψdr

2πa
cosψ . (2.40)

Summing up the contribution at ±ψ and ±(π − ψ), ∆Bz is just 4 times. Thus contribution

from the dipole current at the edge of the beam becomes

∆Bz =

∫ π/2

0

2µ0I0x0
π2a2

cos2 ψ dψ =
µ0I0x0
2πa2

. (2.41)

This ring of dipole current induces a dipole image current in the walls of the beam pipe of

radius b. The magnetic flux density induced by the dipole image current at the pipe center

will be opposite to that from the ring of dipole current in the beam and is represented by

Eq. (2.41) with a→ b. Total magnetic flux density induced on the beam is

∆Bz =
µ0I0x0

2π

(
1

a2
− 1

b2

)
. (2.42)

The transverse impedance per unit length from magnetic field only is

Z⊥
1,mag =

j

βeI0x0
〈F⊥

1 〉 =
j

βeI0x0
ev∆Bz

= j
µ0c

2π

(
1

a2
− 1

b2

)
= j

Z0

2π

(
1

a2
− 1

b2

)
. (2.43)

The transverse impedance per unit length from electric field, Z⊥
1,elect, is related to that from

magnetic field by

Z⊥
1,mag = − 1

β2
Z⊥
1,elect , (2.44)

ψr r’

x’

x

x

z

0x

0x 0

a

- +

+

+

+-

-

-

Figure 5: Left: Coordinates of a particle in a beam with the center offset by x0 in the x direction.
Right: Cross section of dipole beam current when x0 → 0.
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where one β = v/c comes from the current and the second β comes from the Lorentz force,

just as what we got in the longitudinal case. Therefore, adding up both electric and magnetic

contribution

Z⊥
1 = −j Z0

2πβ2γ2

(
1

a2
− 1

b2

)
, (2.45)

where the first part is due to the space-charge self-force and the second part is due to images

at the walls of the beam pipe. There are two comments:

(1) The monopole longitudinal and dipole transverse space-charge impedances obviously are

not related by a Panofsky-Wenzel-like relation such as Eq. (2.24).

(2) The self-force part is related to the coherent self-force space-charge tune shift. It has

been proven theoretically [2] and by simulation [3, 4] that beam instability is not caused by

whether the spreads of the incoherent particle tunes overlap resonant lines in the tune plot,

but by the coherent shift of the betatron tune into the resonant stop bands. Thus to ensure

stability the coherent tune shifts, both horizontally and vertically, should be kept as small

as possible.

3 TRANSVERSE SPECTRUM WITH BETATRON

OSCILLATION

Consider a particle performing betatron oscillations with amplitude A and tune Q. The

transverse displacement is

x(t) = A cos(Qω0t− ψ) , (3.1)

where ω0 is the revolution frequency and ψ is the betatron phase at t = 0. Suppose that

its azimuthal location along the accelerator ring is θ at t = 0. The dipole moment of the

particle picked up by a beam-position monitor at location θBPM = 0 is the product of the

transverse displacement and the longitudinal current,

de(t, ψ) = eω0A cos(Qω0t− ψ)

∞∑
p=−∞

δ(ω0t− θ − 2pπ)

=
eω0A

2π
cos(Qω0t− ψ)

∞∑
n=−∞

ej(nω0t−nθ)

=
eω0A

4π

∞∑
n=−∞

{
ej[(n+Q)ω0t−nθ−ψ] + ej[(n−Q)ω0t−nθ+ψ]

}
. (3.2)

The first term inside the curly brackets indicates upper sidebands around all the revolution

harmonics, both positive and negative, while the second term indicates lower sidebands.

This is illustrated in Fig. 6. As a result, the spectrum consists of betatron sidebands on

both sides of the revolution harmonics. However, what we observe in a network analyzer or

an oscilloscope are only positive frequencies, or the spectrum with the negative frequencies
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ω/ω0

ω/ω0
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2 3-1-2-3 0 1 4-4

Figure 6: (color) Spectrum of a single particle executing betatron oscillations. Top: spectrum with
upper betatron sidebands. Bottom: spectrum with lower betatron sidebands. Both spectra lead to
exactly the same physical observation.

folded onto the positive frequencies about the zero frequency. It is clear that both the top

and bottom spectra of Fig. 6 will lead to exactly the same physical observation. Because

of this positive-negative-frequency symmetry, we need to study only the top spectrum with

upper sidebands and discard the bottom spectrum with lower sidebands, or to study only

the bottom spectrum and neglect the top one.

In fact, the second term in the curly brackets of Eq. (3.2) becomes e−j[(n+Q)ω0t−nθ−ψ] if

we make the substitution n→ −n. Then the dipole moment can be rewritten as

de(t, ψ) =
eω0A

2π

∞∑
n=−∞

cos[(n +Q)ω0t− nθ − ψ] . (3.3)

Equivalently, this can also be written as

de(t, ψ) =
eω0A

2π

∞∑
n=−∞

cos[(n−Q)ω0t− nθ + ψ] . (3.4)

This tells us again that, when both positive and negative frequencies are considered, upper

sidebands and lower sidebands give the same physical picture. In most publications, the

spectrum with the upper sidebands is chosen and we follow this convention here.

The angular phase velocity ωph of a wave is just the ratio of the coefficient of t to the

coefficient of the coordinate θ. In our case, for Eq. (3.3),

ωph =

(
1 +

Q

n

)
ω0 if n �= 0 . (3.5)
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Q = 2 + Qf

Q f -Q f
Q f Q fQ fQ f

Q fQ fQ fQ f

= 2fn

2 3 4 5-1-2-3 0 1

Super-slow
backward

(red)

Slow waves (blue)

Fast waves (red)

Figure 7: (color) Spectrum of a single particle executing betatron oscillations. Top: spectrum with
upper betatron sidebands. Bottom: spectrum with lower betatron sidebands. Both spectra lead to
exactly the same physical observation.

When Q = 0, we see that the waves corresponding to all the revolution harmonics, positive

and negative, have the same angular phase velocity ω0, which is equal to the angular velocity

of the beam particle. With a nonzero betatron tune Q, we may think that the waves at

sidebands corresponding to n > 0 (upper sidebands seen in a network analyzer in an only-

positive-frequency language) will travel faster and those corresponding to n < 0 will travel

slower. The story is more complicated because the betatron tune has an integer part nQ and

a noninteger part Qf , or Q = nQ +Qf . An illustration is shown in Fig. 7 with nQ = 2 and

Qf = 0.25. The illustration shows all the upper sidebands in red and the lower sidebands,

reflected from the upper sidebands that have negative frequencies, in blue. Because nQ = 2,

the upper sideband next to n = 0 is actually associated with n = −2, while the one next to

n = 1 is associated with n = −1. Thus, these two upper sidebands correspond to waves with

velocities ωph = −0.125ω0 and −1.25ω0 according to Eq. (3.5). These waves are so slow that

they go backward. The next upper sideband next to n = 2 is associated with n = 0; the

wave is stationary and not moving at all [Eq. (3.5) does not apply]. The upper sidebands

next to n = 3, 4, · · · are associated with positive n and they represent waves with velocities

faster than ω0. All the lower sidebands (in blue) are associated with harmonics n that are

negative. Thus, they represent waves with velocities slower than ω0. Summing up

ωph
ω0

= 1 +
Q

n
with



n > 0 fast wave,

n < 0, |n| < Q backward wave,

n < 0, |n| > Q slow wave,

(3.6)

and ωph = 0 or the wave is stationary when n = 0. In the longitudinal spectrum we are going

to study later, synchrotron sidebands correspond to waves with velocities that differ only

slightly from the particle velocity, because the synchrotron tune is very much less than unity.

On the other hand, we have seen that the velocities of waves corresponding to the betatron
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sidebands can differ very much from the particle velocity. It is important to distinguish slow

waves from fast waves and backward waves, because, as we shall see later, only slow waves

can be susceptible to instabilities. This is because Re Z⊥
1 (ω) ≷ 0 when ω ≷ 0.

So far we have studied the betatron spectrum of a single particle. For many particles

inside a beam, the transverse dipole moment is obtained by adding up the dipole moment

de(t, ψ) of all particles. Since the betatron phase ψ is random among the particles, the dipole

moment averages to zero, meaning that all these upper and lower betatron sidebands will

not be visible to an oscilloscope.∗ They are only visible when excited by a transverse driving

force, like a kicker, the transverse coupling impedance, etc. If a slow wave is excited and if

there is no or not enough damping mechanism, the beam becomes unstable. For this reason,

the lower betatron sidebands appear much more intense than the upper betatron sidebands.

4 LONGITUDINAL SPECTRUM WITH

SYNCHROTRON OSCILLATIONS

Consider a particle with charge e executing synchrotron oscillations of amplitude τ̂ ,

frequency ωs, and phase ψ. The longitudinal current picked up by a wall-gap monitor at

azimuthal location θwall = 0 can be represented by

Ie(t) = e

∞∑
�=−∞

δ[t− τ̂ cos(ωst− ψ) − -T0]

=
eω0
2π

∞∑
n=−∞

exp {jn[ω0t− ω0τ̂ cos(ωst− ψ)]} , (4.1)

where ω0 = 2π/T0 is the revolution angular frequency. For convenience, we have omitted the

azimuthal phase θ designating the location of the particle along the accelerator ring at time

t = 0. With the aid of

e−jx cosψ =

∞∑
m=−∞

j−mJm(x)ejmψ , (4.2)

we can expand the current signal into azimuthal harmonics:

Ie(t) =
eω0
2π

∞∑
n=−∞

∞∑
m=−∞

j−mJm(nω0τ̂)e
j(nω0+mωs)tejmψ . (4.3)

Here, we see discrete spectral lines at ω = nω + mωs for n = −∞ to ∞ and m = −∞
to ∞, implying that there will be sidebands on both sides of all the revolution harmonics,

either positive or negative. Since an oscilloscope records only positive frequencies, the lower

∗They are visible in a Schottky scan.
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sidebands will be indistinguishable from the upper sidebands. Thus there will not be any

loss of generality if we study only the upper sidebands and neglect the lower sidebands.

This consideration is exactly the same as in the spectrum of a particle executing betatron

oscillation but without synchrotron oscillation.

The Bessel functions in the summation determine the amplitude of the sidebands.∗ The

synchrotron amplitude τ̂ is usually very much smaller than the revolution period. Let us

take the Fermilab Tevatron as an example, the revolution period is 20.9 µs and a particle at

the edge of a bunch of rms length 50 cm can have a synchrotron amplitude of τ̂ ≈ 4 ns, giving

ω0τ̂ ≈ 0.0012. In this case, the lowest sidebands m = 1 dominate at low frequencies. The

revolution harmonics (m = 0) having amplitudes bounded by J0 start dropping appreciably

near harmonic n ∼ 800, while the amplitudes of the m = 1 sidebands increase first linearly

with frequency under the envelope of J1. At higher frequencies, the higher order sidebands

(m > 1) will be observed. The m = 2 sidebands can have larger amplitudes than the

revolution harmonics (m = 0) and the m = 1 sidebands when J2 assumes a maximum near

n ∼ 2500. This is illustrated in Fig. 8, where ω0τ̂ = 0.4 has been used.

Figure 8: (color) Spectrum of a beam particle with synchrotron motion as observed by an os-
cilloscope with ω0τ̂ = 0.4. The upper sidebands associated with positive revolution harmonics
are shown in red, while the upper sidebands associated with negative revolution harmonics are
shown in blue and appear as lower sidebands when folded into positive frequencies. The revolution
harmonics (m = 0) are bounded by Bessel function of order zero, the first synchrotron sidebands
(m = 1) are bounded approximately by Bessel function of order one, and the second synchrotron
sidebands (m = 2) are bounded approximately by Bessel function of order two. The phases of the
sidebands have not been taken into account.

∗Some authors approximate Eq. (4.1) by substituting t = �T0 in the argument of the cosine. This will
result in having Jm(nω0τ̂ ) in Eq. (4.3) changed to Jm[(nω0 +mωs)τ̂ ]. In this approximation, the amplitude
of the sidebands are bounded exactly by the Bessel functions. In the more exact expression of Eq. (4.3),
however, these bounds are only approximate.
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It is important to point out that the Bessel functions have nothing to do with the linear

distribution of the particle bunch because here we are dealing with only a point particle.

The Bessel functions just reflect the synchrotron motion of the point particle. If we wish to

study the signal from a bunch of particles, we need to multiply Eq. (4.3) by the distribution

ρ(ψ, τ̂ , θ) in the synchrotron phase ψ, the synchrotron oscillation amplitude τ̂ , and particle

azimuthal position θ, and integrate over ψ, τ̂ , and θ. For example, if ρ(ψ, τ̂ , θ) is random in

ψ, the integral vanishes for all azimuthals except form = 0, or just the revolution harmonics.

This is understandable because the bunch is smooth azimuthally. The revolution harmonics

will still be visible because θ is localized for a bunch The distribution must be nonuniform

in the synchrotron phase before some azimuthal sidebands can be excited. We also see that

the sidebands will be broadened when signals are gathered from an ensemble of particles.

This is due to a spread in energy among the particles and also the coupling impedance of

the vacuum chamber. When excited below transition and an instability occurs, the lower

synchrotron sidebands are unstable while the upper synchrotron sidebands are stable, and

the other way around above transition. The reason is the same as in Robinson instability. [5]

4.1 Coherent synchrotron modes

The modes observed in a bunch of particles are called coherent modes. For a smooth

bunch, the distribution function is ρ(τ̂ , ψ) = ρ0(τ̂). The current signal of this NB-particle

bunch picked up by a gap monitor is

I0(t) =

∫
Ie(t, τ̂ , ψ)ρ0(τ̂)τ̂ dτ̂dψ = Iav

∞∑
n=−∞

An,0e
jnω0t , (4.4)

where Iav = eNBf0 is the average beam current, f0 is the revolution frequency, and we assume

that the integration over the azimuthal position θ has been performed. The amplitudes of

the revolution harmonic signals An,0 are the Hankel transforms of ρ0,

An,0 = 2π

∫ ∞

0

J0(nω0τ̂)ρ0(τ̂)τ̂ dτ̂ . (4.5)

If one measures the amplitudes of all the revolution harmonics, one can reconstruct the

distribution ρ(τ̂) from the inverse Hankel transform.

With the mth azimuthal mode excited, the bunch distribution becomes

ρ(τ̂ , ψ) = ρ0(τ̂ ) + ∆ρ(τ̂ , ψ) , (4.6)

where

∆ρ(τ̂ , ψ) = ρm(τ̂)ej(Ωct−mψ) , (4.7)
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and Ωc is the coherent frequency. The signals of the bunch current become

I(t) = I0(t) + ∆I(t) , (4.8)

with the coherent current signal

∆I(t) =

∫
Ie(t, τ̂ , ψ)∆ρ(τ̂ψ)τ̂ dτ̂dψ = Iav

∞∑
n=−∞

An,me
j(nω0+mωs+Ωc)t . (4.9)

In above, the amplitude of the excited sideband,† An,m, is the mth order Hankel transform

of ρm,

An,m = 2π

∫ ∞

0

j−mJm(nω0τ̂)ρm(τ̂ )τ̂dτ̂ . (4.10)

Again, the collective perturbed distribution ρm can be reconstructed through inverse Hankel

transform when all mth-azimuthal sideband amplitudes are measured by tuning a spectrum

analyzer to each sideband. We can also obtain An,m by taking the fast Fourier transform

spectrum of the longitudinal beam profile digitized at fixed times during the onset of the

coherent mode instability, for which a digital oscilloscope with a sizeable memory will be

required.

To illustrate this, let us study the coherent synchrotron modes of a kicked beam. First

assume a Gaussian equilibrium distribution and express it as a function of τ and τ̇ /ωs,

ρ0(τ̂) =
1

2πσ2τ
e−τ̂2/(2σ2

τ ) =
1

2πσ2τ
exp

[
−τ

2 + (τ̇ /ωs)
2

2σ2τ

]
. (4.11)

The beam is now kicked in phase by τk. The initial distribution is obtained by substituting

τ by τ + τk, or

ρ

(
τ,
τ̇

ωs

)
=

1

2πσ2τ
exp

(
− τ 2k

2σ2τ
− τ̂ 2

2σ2τ
− τ̂ τk
σ2τ

cosψ

)
, (4.12)

where τ̂ 2 = τ 2 + (τ̇ /ωs)
2 and τ = τ̂ cosψ have been used. Next invoke the identity

e−x cosψ =
∞∑

m=−∞
(−1)mIm(x)ejmψ (4.13)

to obtain

ρ

(
τ,
τ̇

ωs

)
=

1

2πσ2τ
exp

(
− τ 2k

2σ2τ
− τ̂ 2

2σ2τ

) ∞∑
m=−∞

(−1)mIm

(
τ̂k
σ2τ

)
ejmψ , (4.14)

where Im is the modified Bessel function of order m having the property I−m = Im. We can

now identify

ρm(τ̂ ) =
1

2πσ2τ
exp

(
− τ 2

2σ2τ
− τ̂ 2k

2σ2τ

)
(−1)mIm

(
τ̂k
σ2τ

)
(4.15)

†The phase j−m is unimportant, since it is the same for all An,m’s.
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and the coherent mode integral in Eq. (4.10) becomes‡

An,m =
2πjm

2σ2τ
e−τ2

k/(2σ
2
τ )

∫ ∞

0

e−τ̂2/(2σ2
τ )Im

(
τ̂ τk
σ2τ

)
Jm(nω0τ̂ )τ̂dτ̂

= jme
− 1

2
(nω0τk)

2(στ
τk

)2
Jm(nω0τk) . (4.16)

4.2 Measurement of Coherent Synchrotron Modes

An experimental measurement of coherent synchrotron modes was performed at the Cooler

Ring of the Indiana University Cyclotron Facility (IUCF) a few years ago when holding

the US Accelerator School. The ring had a revolution frequency of f0 = 1.03168 Hz, a rf

harmonic h = 1, and a phase slip factor η = −0.86. The bunched beam contained about

5 × 108 protons at a kinetic energy of 45 MeV and a rms length of about 20 ns. The cycle

time was 5 s while the injected beam was electron-cooled for about 3 s. The beam was kicked

longitudinally by phase-shifting the rf cavity wave form. The response time of the step phase

shifts was limited primarily by the inertia of the rf cavities, which had a quality factor of

about Q = 40. The first kick was τk = 90 ns, or equivalently ω0τk = 0.58. The synchrotron

sideband power was observed from a spectrum analyzer tuned to the sideband. The sideband

power of the first harmonic f0 − fs, proportional to |A1,1|2, is shown in the upper trace of

Fig. 9 and the sixth harmonic 6f0 − fs, proportional to |A6,1|2, is shown in lower trace. The

lower synchrotron sidebands were chosen because they are the more unstable ones below

transition.

Figure 9: The synchrotron sideband
power of the fundamental harmonic (top
trace) and that of the 6th harmonic
(lower trace), as measured by a spectrum
analyzer tuned to the sidebands. The
sidebands were excited by shifting the rf
phase by τk = 90 ns. The amplitude
of synchrotron oscillation was damped by
electron cooling.

According to Eq. (4.16), the phase kick contributes

A1,1 ∼ e−0.0083J1(0.58) and A6,1 ∼ e−0.299J1(3.48) . (4.17)

‡Gradskteyn and Ryzhik 6.633.4:
∫ ∞

0

e−αx2
Im(βx)Jm(γx)dx =

1
2α

e(β2−γ2)/(4α)Jm

(
βγ

2α

)
if Re α > 0

and Rem > −1.
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As a result, the sideband power of the fundamental harmonic is larger than that of the 6th

harmonic by a factor of 6, as is observed in the figure. As time goes on, the amplitude of

synchrotron oscillation, initially at τa = τk, was damped by electron cooling. We see that

the sideband power of the fundamental harmonic decreases and that of the 6th harmonic

increases just as expected, because J1 has its first maximum at 1.841 and its first zero at 3.832,

as depicted in Fig. 10. The rf phase was then shifted to various values and the synchrotron

side band power associated to each revolution harmonic was measured. Figure 11 shows

the synchrotron sideband power as functions of frequency (ωτk = nω0τk) for τk = 53, 90,

100, and 150 ns. All data are normalized to the first peak (nω0τk ≈ 1.8 when τk = 53 and

n = 1). Solid curves are |An,1|2 from Eq. (4.16) normalized to the peak. There are no other

adjustable parameters. Satisfactory agreement of measurement with theory is observed.

Figure 10: The bessel function of order one, J1(x), showing its first maximum at 1.841 and first zero
at 3.832. Its argument is identified with x = nω0τa, where τa is the amplitude of the synchrotron
oscillation at some later time after the rf phase shift. As τa decreases as a result of electron cooling,
the power spectrum |A1,1|2 associated with J1(ω0τa) decreases while the power spectrum |A6,1|2
associated with J1(6ω0τa) increases.

5 TRANSVERSE INSTABILITY OF A COASTING

BEAM

Consider the kth particle in a coasting beam executing betatron oscillation with fre-

quency Qkω0. The transverse displacement yk satisfies the equation of motion

ÿk + (Qkω0)
2yk =

F⊥
γm

, (5.1)
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Figure 11: The initial synchrotron side-
band power as functions of frequency
ωτk = nω0τk after rf phase shifts of τk =
53m 90, 100, and 150 ns. The solid curves
are the theoretical expectation normalized
to the first peaks of the data. There are no
other adjustable parameters.

where the double overdot corresponds to second derivative with respect to time, m is the

particle rest mass, and γ is the Lorentz relativistic factor. Assuming that the transverse

driving force F⊥ is a result of a broadband impedance Z⊥
1 , we can write, according to

Eq. (2.4),

F⊥ = −ejIZ
⊥
1

2πR
〈y〉 , (5.2)

where 〈y〉 is the transverse displacement of the beam center, I〈y〉 is the dipole current, e is

the particle charge, and R is the mean radius of the accelerator ring.

Let us assume the ansatz

yk = Yke
j(Ωct−nθ) , (5.3)

where n is a revolution harmonic, θ is the angle along the closed orbit of the accelerator, and

Ωc is the collective frequency to be determined later. This ansatz says nothing more than the

fact that the revolution harmonic is a good eigennumber for the description of the collective

motion, and its validity requires future verification. The time derivatives in Eq. (5.1) are

total time derivatives, or

ẏk =
∂yk
∂t

+ θ̇
∂yk
∂θ

= j(Ωc − nω0)yk . (5.4)

Thus, Eq. (5.1) transforms to

[
(Qkω0)

2 − (Ωc − nω0)
2
]
yk = −ejIZ

⊥
1

2πR
〈y〉 . (5.5)
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The next step is to obtain an equation for the collective frequency independent of the trans-

verse displacement yk. The general way to accomplish this is to move the squared bracketed

quantity on the left side of Eq. (5.5) to the denominator of the right side. We then multiply

both sides by the transverse beam distribution ρ(ξ). When we integrate over ξ, the left side

becomes the mean transverse displacement of the beam, which cancels 〈y〉 on the right side.

The result is a dispersion relation

1 =
jβeIZ⊥

1

2πRγm

∫
ρ(ξ)

(Ωc − nω0)2 − (Qω0)2
dξ . (5.6)

where the betatron frequency Qω0 is a function of ξ. This is called a dispersion relation

because it relates the collective frequency of the beam to the impedance of the surrounding

vacuum chamber. The success of obtaining the dispersion relation implies that the ansatz of

Eq. (5.3) is indeed correct. The betatron frequency can be a function of momentum offset.

It can also depend on the betatron amplitudes due to space-charge force, sextupoles and

other magnetic multipoles of the accelerator lattice. All these dependencies are represented

by the parameter ξ and ρ is just the beam transverse distribution in all these dependencies.

The denominator of the dispersion relation has two zeros

Ωc − nω0 = ±Qω0 . (5.7)

The positive sign corresponds to looking at all the upper betatron sidebands of both the

positive and negative revolution harmonics as illustrated in the upper plot of Fig. 6, while

the lower sign corresponds to looking at all the lower sidebands in the lower plot of the figure.

Since we know already that each of the two pictures will result in exactly the same physical

observation, we can focus on one and discard the other. Since the two zeros are separated

by twice the betatron tune which is a large number compared with the coherent tune shift

to be determined, we can linearize the denominator of the dispersion relation near one of the

zeroes. According to the convention of keeping only the upper sidebands, the linearization

results in

(Ωc − nω0)
2 − (Qω0)

2 ≈ 2Qω0(Ωc − ωn,w) with ωn,w = (n+Q)ω0 . (5.8)

The dispersion relation then takes the simpler form

1 =
jβeIZ⊥

1

4πRγmQω0

∫
ρ(ξ)

Ωc − ωn,w(ξ)
dξ . (5.9)

Now let us limit ourselves to the special case of betatron frequency spread versus momen-

tum offset δ only. The betatron tune depends on δ through the chromaticity Cy while the

revolution frequency depends on δ through the phase slip parameter η:

∆Q = Cyδ and ∆ω0 = −ηω0δ . (5.10)
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We can therefore expand the betatron frequency in the form of

ωn,w = ωn,w0 + [Cy − (n+Q)η]ω0δ , (5.11)

where we have assigned the fractional off-momentum coordinate δ as the parameter ξ, and

ωn,w0 is the nominal value of ωn,w for the on-momentum particle. As we shall see, the spread

in ωn,w is the key of avoiding solutions which cause collective instabilities in the beam. Note

that in Eq. (5.11) there is a revolution harmonic n which minimizes the frequency spread of

ωn,w and even makes the spread vanish for some particular values of Cy.

5.1 Zero Frequency Spread

For a beam without momentum spread, the denominator of the dispersion relation in Eq. (5.9)

is independent of the variable of integration and can be taken to the left side, giving the

solution

Ωc = ωn,w0 + j
eβIZ⊥

1

4πRγmQω0
. (5.12)

With our time varying convention ejωt, any negative imaginary part of the frequency will

be an exponential growth. While ImZ⊥
1 contributes to a frequency shift, Re Z⊥

1 at negative

frequency∗ contributes to a growth. We recall from our discussion of Fig. 7 that all betatron

sidebands that are of negative values correspond to slow waves. We therefore reach the

conclusion that all slow waves that support a real part of the transverse impedance are

intrinsically unstable unless there exists some damping mechanism.

5.2 Finite Frequency Spread

With a finite frequency spread, the integral in the dispersion relation must be performed to

decide whether there is an unstable solution. When the transverse impedance Z⊥
1 is given,

the dispersion relation is an eigenequation, with the collective frequency Ωc the eigenvalue

and the particle displacements y(ξ) the eigenfunction. Let us define the parameters

V + jU =
eβIZ⊥

1

4πRγmQω0
, (5.13)

which are just representation of the impedance:

V ∼ ReZ⊥
1 and U ∼ ImZ⊥

1 . (5.14)

The dispersion relation is now written as

(−U + jV )−1 =

∫
ρ(ξ)

Ωc − ωn,w(ξ)
dξ . (5.15)

∗Recall that Re Z⊥
1 is positive at positive frequencies and negative at negative frequencies.
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To analyze the stability of the beam, we first fix one value for the imaginary part of the

collective frequency Ωc (the growth rate) and vary the real part (the real frequency shift).

For each ReΩc, the dispersion integral is solved and a pair of values of U and V are obtained.

In this way, an equal-growth contour is drawn in U-V plane. One such contour corresponding

to ImΩc = 0− is of particular interest, because it demonstrates the edge of stability and

we call it the stability contour. When these contours are drawn, we can read out readily

whether the beam will be stable and if not the growth rate once the impedance of the vacuum

chamber (corresponding to one point in the U-V plane) is known.

To demonstrate this, let us consider a coasting beam with a Gaussian momentum-spread

distribution

ρ(δ) =
1√

2πσδ
e−δ2/(2σ2

δ ) , (5.16)

where δ is the fractional momentum offset of some particle. With ωn,w(δ) given by Eq. (5.11),

the dispersion relation can be solved in terms of the complex error function

w(z) = e−z2

erfc(−jz) =
j

π

∫ ∞

−∞

e−t2

z − t
dt , (5.17)

where erfc is the complementary error function. Thus the solution of the dispersion relation

can be written as

(v + ju)−1 = w

(
Ωc − ωn,w0

σω

)
, (5.18)

where

σω =
√

2[Cy − (n+Q)η]ω0δ (5.19)

is the rms betatron frequency spread of the beam for harmonic mode n and

u =

√
πU

σω
and v =

√
πV

σω
. (5.20)

The contours for ImΩc = 0 and −0.5σω are shown in Fig. 12. Since only the slow waves will

be unstable, the first left contour represents growth rate of 0.5σω (ImΩc = −0.5σω) while

the second left contour represents the threshold. Any region to the right of this threshold

curve (including the two contours on the right) is stable. The rectangular symbols represent

coherent frequency shift of Ωc − nω0 = ±σω (inner ones) and ±2σω (outer ones). Without

any betatron frequency spread (or momentum spread) in the beam, we learned from the

previous section that any small amount of Re Z⊥
1 at negative frequency (any negative v)

will be able to drive the beam unstable. Now with a Gaussian betatron frequency spread,

when the betatron frequency shift is ±σω, a negative v of ∼ 3 units is required to drive

the beam to instability. When the frequency shift becomes ±2σω, a negative v of ∼ 0.8 is

required to drive the beam to instability. This implies that there has been some damping

which counteracts the impedance to stabilize the beam. This damping mechanism is called
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Figure 12: Normalized plots of
contours corresponding to growth
rates ImΩc = −0.5σω and
ImΩc = 0 (the first left and
second left curves) for a Gaus-
sian distribution of the momen-
tum offset of a coasting beam.
The rectangular symbols rep-
resent three coherent frequency
shifts of Re(Ωc−nω0) = ±σω and
±2σω.

Landau damping which we are going to study in the next section. In general whenever the

betatron frequency shift is within the distribution ρ, there will be Landau damping to help

fighting against the impedance driving force. Landau damping becomes smaller when the

frequency shifts towards the edge of the distribution ρ, and finally vanishes when the shift

is outside the distribution.

5.3 A Model of Collective Motion

The dispersion relation can also be solved by diagonalizing a matrix. Consider an ensemble

of N macroparticles. The kth particle is in a certain distribution ρk and has a transverse

offset Yk. Thus, the offset of the beam center is

〈Y 〉 =
N∑
�=1

ρ�Y� with
N∑
�=1

ρ� = 1 . (5.21)

The wake force drives the center of the beam. The equation of motion of the kth particle

can be rewritten as

(Ωc − ωn,wk)Yk = W
N∑
�=1

ρ�Y� , (5.22)

where W is complex and can be represented by

W = jAZ⊥
1 = −A ImZ‖

1 + jAReZ⊥
1 , (5.23)



26

with A being a positive constant. There are N collective modes and their respective collective

mode frequencies ω can be obtained by solving the eigenvalue-eigenfunction matrix equation:


Ωc − ωn,w1 0 · · · 0

0 Ωc − ωn,w2 · · · 0

· · · · · · · · · · · ·
0 0 · · · Ωc − ωn,wN





Y1
Y2
· · ·
YN


 = W



ρ1 ρ2 · · · ρN

ρ1 ρ2 · · · ρN

· · · · · · · · · · · ·
ρ1 ρ2 · · · ρN





Y1
Y2
· · ·
YN


 .

(5.24)

Let us consider the following special cases:

(1) No spread in betatron frequency.

Without any spread, we can write

ωn.wk = ωn.w0 . (5.25)

Equation (5.22) can be solved easily by multiplying on both sides by ρk and summing over

k. The solution is

Ωc = ωn,w0 +W , (5.26)

which is unstable for the slow waves because ImW ∝ Re Z⊥
1 , agreeing with what we studied

before.

(2) Space-charge tune spread

We learn that a spread in the particle oscillation frequency provides Landau damping.

However, we want to show here that space-charge tune spread will not provide Landau

damping. For a cylindrically symmetric beam, the space-charge force on a particle at an

offset r is

Fsp ch ∝ 1

2πr

∫ r

0

ρ(r′)2πr′dr′ = f(r)r , (5.27)

where

f(r) =
1

2πr2

∫ r

0

ρ(r′)2πr′dr′ . (5.28)

For example, in the bi-Gaussian distribution ρ(r) = e−r2/(2σ2
r )/(2πσ2r),

f(r) =
1

2π

(
1 − e−r2/(2σ2

r )
)

r→0−→
1

4πσ2r
. (5.29)

Including this incoherent force, the equation of motion becomes

(Ωc − ωn,w0)Yk + fk∆Ω(Yk − 〈Y 〉) = W
N∑
�=1

ρ�Y� , (5.30)
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since the space-charge force is measured with respect to the center of the beam. In above,

∆Ω is proportional to the space-charge tune spread. Collecting all the terms proportional

to 〈Y 〉 to the right side,

(Ωc − ωn,w0 + fk∆Ω)Yk = (W − fk∆Ω)〈Y 〉 . (5.31)

We can eliminate 〈Y 〉 to obtain the dispersion relation

1 =
N∑
�=1

ρk
W + fk∆Ω

Ωc − ωn,w0 + fk∆Ω
. (5.32)

It is clear the solution is

Ωc − ωn,w0 = W . (5.33)

Thus, the space-charge tune spread does not affect the collective mode frequencies at all.

This demonstration is very general; it just depends on the fact that the space-charge force

is measured from the center of the beam and is independent of the distribution fk, nor

does it matter whether the distribution is discrete or continuous. On the other hand, the

displacement Yk is measured from the closed orbit of the machine.

(3) Landau damping

Now consider the same equation but with the tune-spread force measured from the

closed orbit,

(Ωc − ωn,w0)Yk + fkYk = W
N∑
�=1

ρ�Y� . (5.34)

Without the impedance-driving force on the right side, the betatron frequency of the indi-

vidual particles are

Ωc = ωn,w0 + fk . (5.35)

Every particle is oscillating with a slightly different frequency. On the other hand, the

impedance-driving force is introducing a growth rate proportional to −ImW for the coherent

amplitude. If the frequency spread is larger than the growth rate, the phases of oscillation

of the particles cannot be kept roughly the same for one growth time. In other words, the

collective growth will not be able to materialize. The rule of thumb for Landau damping is:

the spread in oscillation frequency must be larger than the growth rate without damping.

The collective mode frequencies can be obtained by diagonalizing the matrix equation.

One must understand that the mechanism of Landau damping is the shifting of energy

onto one collective mode from the damping of all other modes. Therefore, there must be many

collective modes or many particles inside the beam so that energy can be transferred from

one mode to another. For example, if there are only two particles with different unperturbed
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betatron frequencies, there will not be any Landau damping no matter how large the tune

split is between the two particles. This can be demonstrated easily. The matrix equation

now becomes (
∆ω 0

0 ∆ω + ∆Ω

)(
Y1
Y2

)
= W

(
1
2

1
2

1
2

1
2

)(
Y1
Y2

)
, (5.36)

where ∆Ω is the frequency split, ρk = 1
2

is the particle density, and ∆ω = Ωc − ωn,w0. The

collective frequencies are

∆ω =
W − ∆Ω

2
±
√
W 2 + ∆Ω2

4
. (5.37)

If we include only the unstable part ofW , i.e., writingW = j ImW , the collective frequencies

become

∆ω =
j ImW − ∆Ω

2
±
√

∆Ω2 − (ImW )2

4
. (5.38)

We see that no matter how big the frequency split ∆Ω is, there is always an unstable solution.

6 LANDAU DAMPING

Consider the ensemble of particles with intrinsic betatron frequency ωβ = Qω0 driven

by an external force of frequency ω and strength F̂ . The equation of motion of a particular

particle is

ÿ + ω2
βy = F̂ sinωt . (6.1)

This solution of the equation is usually singular when the frequency of the driving force

approaches the intrinsic frequency of the particles. However, when the initial conditions

y = y0 and ẏ = ẏ0 are specified, the solution

y(t) =
F̂

ω2
β − ω2

(
sinωt− ω

ωβ
sinωβt

)
+ y0 cosωβt+

ẏ0
ωβ

sinωβt (6.2)

becomes well-behaved when ω = ωβ. The terms involving the initial conditions will diminish

as a result of decoherence in the presence of a spread in the betatron frequency. They do

not participate in the dynamic interaction of the beam particles and will be neglected at this

moment.

What we are interested in is the situation when the driving frequency ω is very close to

the betatron frequency ωβ of the particles, i.e., ωβ = ω + ε with |ε|  ω. The solution is

y(t) ≈ F̂

2ω

[
1 − cos(εt)

ε
sinωt− sin εt

ε
cosωt

]
, (6.3)
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where we have separated the fast-oscillating parts, namely ωt, from the slowly oscillating

parts, namely εt. The first term is in phase with the driving force and the second term 90◦

out of phase. Thus energy is exchanged through the second term. The two slowly varying

functions

p(ε) =
1 − cos εt

ε
and d(ε) =

sin εt

ε
(6.4)

are illustrated in Fig. 13. In particular, d(ε) controls how the energy is transferred. At the

beginning (time t is small), the main peak of d(ε) is wide enough to include the the betatron

frequency ωβ = ω + ε of the particle, and energy is absorbed by the particle resulting in

an increase in oscillation amplitude. As time increases to t > π/|ε|, the main peak of

d(ε) shrinks to the point that the particle betatron frequency falls outside the peak. The

particle then no longer is able to absorb energy from the driving force. Instead, it gives

out its oscillation energy back to the driving force. Therefore, as time goes on, more and

more particles will not be driven by the force and only those few particles having betatron

frequencies extremely close to the driving frequency, or extremely small |ε|, will continue to

receive energy from the driving force. In other words, collective motion of the whole particle

beam is no longer possible. This mechanism of inability to increase the oscillation amplitude

is called Landau damping. An illustration is shown in Fig. 14, where the driving frequency is

set at ω = 0.75 Hz, while the driven oscillations of three particles having betatron frequencies

Figure 13: Plots of the two slowly varying functions, p(ε) and d(ε), with time t being a parameter.
As t → ∞, p(ε) → Pε−1 and d(ε) → πδ(ε), where P denotes principal value. Note the d(ε) controls
the way energy is transferred.
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Figure 14: With a driving frequency of ω = 0.75 Hz, a particle with betatron frequency ωβ =
0.85 Hz (dash-dots), or ε = 0.1 Hz, is driven for t ∼ π/|ε| = 31 s only before its amplitude
decreases and oscillation energy is transferred to other particles. A particle with betatron frequency
ωβ = 0.80 Hz (dashes), or ε = 0.05 Hz, is driven for t ∼ π/|ε| = 63 s before its oscillation energy
is given up. On the other hand, a particle with betatron frequency ωβ = 0.76 Hz (dashes), or
ε = 0.01 Hz, continues to absorb energy with its oscillation amplitude increasing linearly in the
100 s interval shown in the plot. It will give up its energy only after t ∼ π/|ε| = 314 s.

ωβ = 0.85 (dash-dots), 0.80 (dashes), and 0.76 Hz (line) are displayed. The horizontal time

scale is in seconds.

The energy absorbed by a beam particle from the driving force in time t can be easily

computed:

E(t) =

∫ t

0

ẏF̂ sinωt′ dt′ =
1

2
F̂ 2 sin2 1

2
εt

ε2
+ · · · , (6.5)

where only the leading term is shown. This again demonstrates that the particle first absorbs

energy from the driving force and starts surrendering it back when t � π/|ε|. However, when

its betatron frequency ωβ is extremely close to the driving frequency ω, the absorption of

energy continues. We also see that the total amount of energy imparted on a particle is

bounded by |ε|−2. Thus more energy is absorbed by the particle if its betatron frequency is

closer to the driving-force frequency. In fact, in the limit of |ε| → 0,

E(t) → 1

4
F̂ 2πtδ(ε) . (6.6)

If ρ(ε) denotes the betatron-frequency distribution of the beam particles, the total energy

flowing into the beam becomes

E(t) → 1

4
F̂ 2πtρ(0) , (6.7)

which increases linearly. However, the energy is absorbed only by those few particles having

betatron frequency exactly equal to the frequency of the driving force. As their oscillation
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amplitudes increase, these particles will eventually be lost to the walls of the beam pipe and

the process of Landau damping stops.

In our discussion of Landau damping so far, the amplitude of the driving force F̂ is

independent of the system of particles. For an instability in a particle beam, the situation

is slightly different. The driving force comes from the wakefields of the beam particles

interacting with the discontinuities of the vacuum chamber, and usually has an amplitude

proportional to the center displacement of the beam. When there is a kick to the beam

that creates a center displacement 〈y〉 or a center displacement velocity 〈ẏ〉, a force with

amplitude F̂ ∝ 〈y〉 or 〈ẏ〉 is generated, which drives the whole ensemble of particles with

the coherent frequency ω. When ω is close to the slow wave frequency ωn,w0 associated with

some revolution harmonic n, slow waves with frequencies ωn,w(δ) corresponding to fractional

momentum offset δ are excited, each of which will receive the amount of response according

to

amplitude (ωn,w) =
F̂

2ω̄n,w

sin(ωn,w − ω)t

ωn,w − ω
, (6.8)

where ω̄n,w is the mean frequency of the system with a small half frequency spread ∆ωn,w.

Now two things happen. First, most excited slow waves give up their excited energy gradually

to those slow waves having frequencies extremely close to ω through their coupling with

the impedance. Second, the center of displacement of the beam starts to decay due to

decoherence as a result of the betatron-frequency spread of the beam particles. As 〈y〉
decreases, the driving force decreases also. Finally the disturbance goes away. This is how

Landau damping takes place in a beam. In fact, this process starts whenever the disturbance

is of infinitesimal magnitude, implying that any disturbance will be damped as soon as it

occurs. We say that there is enough Landau damping to keep the beam stable. Notice

that no frictional force has ever been introduced in the whole process. Thus, there is still

conservation of energy in the presence of Landau damping, which merely redistributes energy

from waves of one frequency to another.

In case the half frequency spread ∆ωn,w is very narrow, it will take t ≈ π/∆ωn,w for the

first wave to surrender its energy to another that has frequency closer to ω. This time will be

very long. Before this time arrives, all frequency components continue to receive energy and

〈y〉 continue to increase and so will the driving force. This is the picture of how an instability

develops when the spread of frequency is not large enough to invoke Landau damping. The

energy that feeds the instability may be extracted from the longitudinal energy of the beam

resulting in a slower speed, or from the rf system that replenishes the beam energy.
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7 LONGITUDINAL INSTABILITY OF A

COASTING BEAM

For a coasting beam, there is no rf voltage, and the unperturbed beam distribution

Ψ0 depends on only one variable δ, the fractional momentum offset, and is normalized

as
∫

Ψ0dδ = 1. The beam generates wakefields which perturb the particle motion. The

perturbed beam distribution Ψ is a function of fractional momentum offset δ as well as time

t and azimuthal position θ around the ring. It obeys the Vlasov equation

dΨ

dt
=
∂Ψ

∂t
+ θ̇

∂Ψ

∂θ
+ δ̇

∂Ψ

∂δ
= 0 , (7.1)

where the overdot represents the derivative with respect to t. Let us assume the ansatz

Ψ(θ, δ, t) = Ψ0(δ) + ∆Ψne
j(Ωct−nθ) , (7.2)

where n �= 0 because of charge conservation and Ωc is the coherent frequency of the beam

to be determined. This ansatz just states that the revolution harmonic number n is a good

eigennumber and its validity will be verified later. The perturbation represents a longitudinal

harmonic wave with n nodes and the effect of the impedance is the bunching of the coasting

beam into n microbunches.

The energy gained by a particle per revolution due to the wakefield is equal to the

average current I0 multiplied by the longitudinal impedance:

∆E
∣∣
per turn

= −Z‖
0

(
eI0

∫
∆Ψndδ

)
ej(Ωct−nθ) , (7.3)

where the impedance is evaluated at the collective frequency Ωc. The negative sign on

the right side signifies that the particle actually loses energy in the presence of a resistive

impedance. The time derivative of the δ coordinate of the coasting beam becomes

δ̇ = − ω0
2πβ2E

(
eI0Z

‖
0

∫
∆Ψndδ

)
ej(Ωct−nθ) , (7.4)

where E is the total energy of the beam particle. Since |∆Ψn|  Ψ0 at the onset of collective

instability, the Vlasov equation can be linearized to become

j(Ωc − nθ̇)∆Ψn =
ω0eI0Z

‖
0

2πβ2E

dΨ0

dδ

(∫
∆Ψndδ

)
. (7.5)

Moving j(Ωc − nθ̇) to the right side, the last bracketed factor on the right side can be

cancelled by an integration over δ, and we obtain the dispersion relation

1 = −j eI0ω0Z
‖
0

2πβ2E

∫
dΨ0/dδ

Ωc − nωdδ , (7.6)
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where the revolution frequency θ̇ = ω(δ) is a function of momentum offset. The success-

ful derivation of the dispersion relation implies that the ansatz given in Eq. (7.1) is self-

consistent.

Similar to the one for transverse instability, once the unperturbed distribution and the

impedance are given, this dispersion relation is to be solved as an eigenequation to obtain the

collective frequency Ωc, which is the eigenvalue, and the perturbed part of the distribution,

which is the eigenfunction. If there is a solution with ImΩc < 0, the amplitude of the

nth harmonic wave grows exponentially and the beam encounters the collective microwave

instability. The terminology is derived from the fact that the coherent frequency observed is

in the microwave frequency range.

7.1 No Spread in Frequency

The dispersion relation in Eq. (7.6) can be integrated by part to become

1 = j
eI0n

2ω0(Z
‖
0/n)

2πβ2E

∫
Ψ0

(Ωc − nω)2
∂ω

∂δ
dδ . (7.7)

With the relation ω = ω0(1− ηδ) where η is the frequency slip factor, the dispersion relation

can be solved analytically for some distribution functions of the beam. Let us first consider

the situation when there is no momentum spread among the beam particles. Then ω = ω0
which is δ independent. The integral over δ is just the normalization of Ψ. We obtain

Ωc = nω0 ±
√

−j eI0n
2ω2

0η(Z
‖
0/n)

2πβ2E
. (7.8)

In order that the beam is stable or ImΩc ≥ 0, one must require ηZ
‖
0/n to be imaginary

and positive. This implies that above/below transition a stable coasting beam must see a

longitudinal impedance which is purely inductive/capacitive. This result is summarized in

Table II.

Table II: Characteristic behavior of longitudinal collective instability without Landau damping.

Z
‖
0/n capacitive inductive resistive

Below transition η < 0 stable unstable unstable

Above transition η > 0 unstable stable unstable

The instability arises from the microbunching of the beam. Below transition, space-

charge impedance, which is capacitive, is repulsive and will therefore not be able to mi-

crobunch the beam. Above transition, however, the space-charge impedance, although it
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remains capacitive, becomes an attractive force. This explains why the beam can become

unstable just after crossing transition if the impedance is dominated by space charge. The

fact that a space-charge force becomes attractive is not conventional. One can envision

such an attractive behavior if the mass of the particles becomes negative. As a result, mi-

crowave instability driven by the space-charge impedance above transition is often called

negative-mass instability.

7.2 Finite Momentum Spread

With finite momentum spread among the beam particles, there exists finite region of the im-

pedance space where there are no unstable solutions. Let us consider a Gaussian momentum-

offset distribution for the unperturbed beam

Ψ(δ) =
1√

2πσδ
e−δ2/(2σ2

δ ) , (7.9)

where σδ is the rms spread. Substituting into Eq. (7.6) and letting ω(δ) = ω0(1 − ηδ), it is

easy to obtain

1 = j
eI0(Z

‖
0/n)

2πβ2Eησ2δ

1√
π

∫ ∞

−∞

xe−x2

x+ z
dx , (7.10)

where we have defined the dimensionless quantities

x =
δ√
2σδ

and z =
Ωc − nω0√
2nηω0σδ

. (7.11)

Now the integral can be written easily in terms of the complex error function w. With the

further substitution of

U + jV =
eI0(Z

‖
0/n)

2πβ2Eησ2δ
, (7.12)

the dispersion relation takes the analytic form

(jU − V )−1 = 1 + jz
√
πw(z) . (7.13)

Just as in the case of the transverse instability, contours of equal growth rates can be drawn

in the U-V space, where U and V are actually proportional to sgn(η)Z
‖
0 . Contours similar to

this are shown in the left plot of Fig. 15. Unlike the situation when there is no momentum

spread in the beam, we see clearly that the beam is stable in a finite impedance space.

This is the result of Landau damping which counteracts the driving force of the impedance

to a certain extent. Notice that these curves look bulb-shape and are different from those

bell-shape curves in the transverse case in Fig. 12. The reason is obvious, here for the

longitudinal we have the derivative of the unperturbed beam distribution dΨ0/dδ in the

dispersion relation, whereas for the transverse we have the distribution ρ(δ).
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7.3 KEIL-SCHNELL CRITERION

For the dispersion relation of a coasting beam, we encounter the integral∫
Ψ′

0(x)

x− z
dx , (7.14)

where z ∝ (Ωc−nω0), the collective frequency. There is one frequency for which the integral

is easy to perform, for virtually any momentum distribution.∗ It is when z = 0 + j0−, or a

point at the threshold contour when there is no frequency shift. It is actually the intercept

of the threshold contour with the V -axis. For a Gaussian distribution in energy spread,

stability requires

−ImZ‖
n

≤ 2πηEσ2
E

eI0β2
. (7.15)

Since this intercept is usually the closest point of the threshold contour from the origin of

the U-V space, we approximate the threshold contour by a circle passing through the point

to arrive at the stability criterion ∣∣∣∣Z‖
n

∣∣∣∣ ≤ 2π|η|Eσ2E
eI0β2

. (7.16)

If we perform the same computation for the parabolic distribution, and draw the circle in

the same way, the criterion becomes∣∣∣∣Z‖
n

∣∣∣∣ ≤ 2π|η|Eσ2
E

eI0β2
F , (7.17)

where F = 5
3

= 1.67. A stability criterion is useful only if it does not depend strongly on

the energy distribution, or, in other words, when the form factor F is close to unity for all

distributions. Obviously, this is not the case here. The reason is that the rms energy spread

is not a good description of a distribution when the edges of the distribution play a more

important role in the Landau damping mechanism. Because of this, we try to use instead

the full-width-at-half-maximum (FWHM) or half-width-at-half-maximum (HWHM). Now

we define

U ′ + jV ′ =
eI0β

2Z‖/n
ηE(∆E/E)2

FWHM

(7.18)

and the dispersion relation now reads

1 = j(U ′ + jV ′)
2

π

∫
f ′(x)dx

z − x
, (7.19)

∗There is also one such point in the transverse case. See Fig. 12. A circle can also be drawn through that
point to obtain a Keil-Schnell transverse stability criterion. As will be demonstrated below, one should use
the full-width-at-half-maximum spread rather than the rms spread.
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where the reduced collective frequency is denoted by z, the reduced energy distribution f(x)

is normalized to unity, and the spread of the distribution is determined by xHWHM = 1. The

Keil-Schnell criterion [6] is now written as∣∣∣∣Z‖
n

∣∣∣∣ ≤ |η|E
eI0β2

(
∆E

E

)2

FWHM

F , (7.20)

where the form factor F = π/3 = 1.05 for the parabolic distribution f(x) = 3
4
(1 − x2) and

F = π/(4 ln 2) = 1.14 for the Gaussian distribution 1√
2π
e−x2/2. For the tri-elliptic distribution

8
3π

(1−x2)3/2, the bi-parabolic distribution 15
16

(1−x2)2, the quad-parabolic distribution 315
32

(1−
x2)4, F = 1.06, 1.07, 1.10, respectively. The criterion is more useful now because F is in fact

close to unity for quite a wide range of distributions.

Figure 15: Left: The growth contours for a Gaussian distribution in revolution frequency below
and above transition. The abscissa U ′ and ordinate V ′ are, respectively, real and imaginary parts of
eI0β

2(Z‖
0/n)/[ηE(∆E/E)2FWHM]. From outside to inside, the contours correspond to growth rates

0.5 to −0.5 in steps of −0.1 in units of HWHM of the frequency spread, where negative values
imply damping. The contour corresponding to the stability threshold is drawn in dot-dashes and
the area inside it is stable. Right: The stability contours for different frequency distribution below
and above transition. From inside to outside, they correspond to unperturbed revolution frequency
distribution f(x) = 3

4(1 − x2), 8
3π (1 − x2)3/2, 15

16(1 − x2)2, 315
32 (1 − x2)4, and 1√

2π
e−x2/2. Note that

all threshold contours cut the V ′-axis at about −1.
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7.4 Boussard Conjecture

Keil-Schnell stability criterion was derived for a coasting beam. Boussard [7] conjectured

that the criterion should apply to a bunch also when the disturbance is much shorter than

the length of the bunch and when the local current is used. Also the growth rate should

be must faster than synchrotron frequency so that synchrotron oscillation can be neglected.

Mathematically, applicability requires

(1) the average beam current I0 replaced by local peak current Î,

(2) the wavelength of the broadband impedance much shorter than length of the bunch.

Thus the Boussard-modified Keil-Schnell stability criterion becomes∣∣∣∣Z‖
n

∣∣∣∣ ≤ |η|E
eÎβ2

(
∆E

E

)2

FWHM

F . (7.21)

This postulate has been well-tested in the CERN Intersecting Storage Ring (ISR).

Krinsky and Wang [8] gave a vigorous derivation of the stability limit of a bunch with

Gaussian energy distribution under the assumption that the wavelength of the perturbation

is much shorter than the length of the bunch. Their result is exactly Eq. (7.16) with the

average current I0 replaced by the peak current Î. This derivation reconfirms Boussard

conjecture.

7.5 Observation

In order for a bunch to be microwave unstable, the growth rate has to be much faster

than the synchrotron frequency. For the Fermilab Main Ring, the synchrotron period was

typically about 100 to 200 turns or 2 to 4 ms. A naive way to observe the microwave

growth is to view the spectrum of the bunch over a large range of frequencies at a certain

moment and watch for the growth of some spectral region. However, the bunch spectrum

produced by a network analyzer is usually via a series of frequency filters of narrow width,

starting from low frequencies and working its way towards high frequencies. This process

is time consuming. As soon as the filtering reaches the frequencies concerned, typically a

few GHz, the microwave growth may have been stabilized already through bunch dilution,

and therefore no growth signals will be recorded. The correct way is to set the network

analyzer at a narrow frequency span and look at the beam signal as a function of time.

The frequency span is next set to an adjacent narrow frequency interval and the observation

repeated until the frequency range of a few GHz has been covered. Besides, we must make

sure that the network analyzer is capable of covering the high frequency of a few GHz for

the microwave growth signals. The cable from the beam detector to the network analyzer

must also be thick enough so that high-frequency attenuation is not a problem in signal
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propagation. Such an observation was made at the CERN Intersecting Storage Ring (ISR)

which is a coasting beam machine. The network analyzer was set at zero span at 0.3 GHz.

The beam current was at 55 mA. The signal observed from injection for 0.2 s is shown

at the lower left corner of Fig. 16 in a linear scale. We see the signal rise sharply and

decay very fast, implying an instability which saturates very soon. The beam current was

next increased by steps to 190 mA and the observation repeated. We notice that with a

higher beam current, the instability starts sooner and stays on longer. The center frequency

of the network analyzer was next increased at the steps of 0.2 GHz and the observation

repeated. The observation reveals an instability driven by a broadband impedance centering

roughly at 1.2 GHz. Microwave instability can also be revealed in monitoring the longitudinal

beam profiles, sometimes known as mountain ranges, via a wall resistance monitor. From

the ripples, the frequency of the driving impedance can be determined. An example is

shown in Fig. 17 for two consecutive turns of a chopped coasting beam at the Los Alamos

Proton Synchrotron Ring (PSR). The source of the instability is a ∼ 72 MHz resonance in

a ferrite loaded pill box, designed to cancel the large space-charge impedance of the vacuum

chamber. Unfortunately, the ferrite resistive impedance has been too large resulting in the

the instability.

8 BUNCH LENGTHENING

When the current is above the microwave instability threshold, the energy spread of the

beam may not just increase until the stability condition is restored. For protons and ions,

measurements show that the energy spread increases to more than the threshold value. This

phenomenon is called overshoot. An experiment observation gives approximately [9]

∆Ebefore∆Eafter ≈ (∆Ethreshold)
2 . (8.1)

An electron bunch is quite different. Due to synchrotron radiation damping, there is

no overshoot and the energy spread and bunch length just increase to the point at which

the threshold condition is satisfied. We can therefore obtain an expression for the bunch

length as a function of the impedance. In terms of the rms bunch length in azimuthal phase

σθ = ω0στ , the peak current of the Gaussian-distributed bunch is

Î =
eNB√
2πστ

=

√
2πI0
σθ

, (8.2)

where I0 = eNBf0 is the average bunch current. The bunch length is related to the energy

spread by

σθ =
ησE

β2νs
. (8.3)
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Figure 16: Pick-up signal after injection in the CERN ISR, for different observation frequencies
but at zero span and different values of beam current. For high beam current, the signal grows
before it decays.

Figure 17: Beam profile of two consecutive turns of a chopped coasting beam recorded in a wall-
gap monitor after storage of ∼ 500 µs. The ripples show that a longitudinal microwave instability
has occurred.
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Substituting into the Keil-Schnell threshold, we obtain

σθ =

(
eI0|ηZ‖

0/n|√
2πFβ2ν2sE

)1/3

. (8.4)

Thus the bunch length depends only on the parameter

ξ =
eI0η

β2ν2sE
. (8.5)

Chao and Garretye [10] showed that if the bunch samples the impedance with the frequency

variation

Z
‖
0 ∼ ωa , (8.6)

the bunch length scales as

σθ ∼ ξ1/(2+a) . (8.7)

In order for Eq. (8.4) to satisfy the scaling law, we must identify a = 1, or the impedance is

a broadband. Actually, a broadband impedance was assumed when the dispersion relation

was derived. The scaling law has been verified at many electron storage rings. The results

for SPEAR at SLAC are shown in Fig. 18, where σθ ∝ ξ0.78, giving a = −0.68. The behavior

of Z
‖
0 ∼ ω−0.68 implies that the bunch is so short that it samples the region of the impedance

at frequencies in the capacitive regime beyond the broadband peak.

Figure 18: RMS bunch length σZ ver-
sus the scaling parameter ξ for the elec-
tron storage ring SPEAR. The momen-
tum compaction factor has been kept con-
stant. The measurement results indicate
that στ ∝ ξ1/(2+a) with a = −0.68.
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9 TRANSITION CROSSING

We can rewrite Keil-Schnell stability criterion for a beam with Gaussian energy distri-

bution by placing the growth rate without damping on the left side,

(−ImΩc)no damping = nω0

√
|η|eÎ(Z‖

0/n)

2πβ2E
≤ nω0

|η|σE

β2
, (9.1)

where the right side is the spread in frequency and can be interpreted as the rate of Landau

damping.

Approaching transition η becomes more and more less negative, reaches zero right at

transition and increases positively afterwards. We see in above that as |η| → 0, the damping

rate goes to zero much faster than the growth rate. Thus there will be a time interval when

the beam becomes unstable. If the machine is space-charge dominated near transition, the

beam will be stable before transition and become unstable after crossing transition.

In the dispersion relation or the Keil-Schnell criterion, η is the most rapid-varying

variable and must be treated with care. But it is more than this. As η is changing the

bunch length στ and the energy spread σE, and therefore the local peak current Î are also

changing, because they are functions of η also. Near transition, we can write

η =
1

γ2
T

− 1

γ2
≈ 2γ̇T

γ3
T

t , (9.2)

where γ̇T is the rate of change of γ or the accelerating rate at transition, and t is the time

measured from the transition point. The dispersion relation is now solved with the substi-

tution of this time-dependent slip factor, and the growth rate (−ImΩc)unstable is obtained

as a function of time. The total growth across transition is then given by

G = exp

{∫
unstable

(−ImΩc)unstabledt

}
. (9.3)

The bunch length and energy spread at each instant can be solved from the synchrotron-

motion equation by assuming that the bunch area remains constant during the transition

crossing. More involved consideration to include the potential distortion of the space-charge

force can also be incorporated. Detailed derivation reveals that the bunch ellipse actually

becomes tilted in the longitudinal phase space, because synchrotron oscillation is slowing

down. All these consideration should be included in a credible computation. [11, 12]

The next problem is the interpretation of the total growth computed in Eq. (9.3). This

is not the growth of the bunch area. It is actually the growth of some spectral modes of the

bunch that the impedance is perturbing. Let us assume that space charge is the main culprit.
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We learn before that ImZ‖
0/n is frequency independent. Thus, the growth rate, given by

Eq. (9.1) increases linearly with frequency. The situation is actually not so bad because

ImZ‖
0/n does roll off when the wavelength is of the order a/γ, where a is the transverse

size of the beam. Such a frequency dependency of the impedance is essential and must be

included in the computation. The frequency of maximum growth is usually very large, for

example fmax ∼ 78 GHz for the Fermilab Main Ring. We may ask what are the seeds of

the growth at such high frequencies? Hardt’s transition-crossing theory [13] says that the

seeds come from the Schottky noise of the beam. We may wonder how can such a growth

be important because the Schottky noise is so small. The answer is: the total growth can be

enormous. Here we cite an example of the Fermilab Main Ring where the beam pipe radius

b = 35 mm and beam radius a = 5 mm. The synchronous phase was 60◦ while crossing

transition. Table III compares the final dimensionless power of the beam spectrum. Notice

that if we choose the cutoff frequency, the seed coming from the beam linear distribution is

big, but the total growth is small. On the other hand, if we choose fmax ∼ 78 GHz , the seed

coming from Schottky noise is small but the total growth is large. We see that when the

original bunch area is 0.09 eV-s at γ̇T = 90 s−1 and total number of particles in the bunch

Nb = 2.2× 1010, the power spectrum at cutoff frequency is 1.26 after crossing transition and

is very much larger than the power spectrum of 1.41 × 10−6 at fmax, the maximum growth

frequency. However, when the original bunch area is reduced to 0.05 eV-s, while the power

at cutoff grows to 3.70 only, the power at fmax grows to 1.5 × 109. Hardt also suggested a

critical threshold parameter c; rapid growth will occur when c > 1. Figure 19 shows the

rapid growths of c as functions of bunch area, respectively, for the Fermilab Main Ring and

the Fermilab Main Injector.

Table III: Final fluctuation power spectra at cutoff and high-frequency Schottky harmonics.

γ̇t Nb Initial Bunch Emittance Final Power Spectrum of Fluctuation
(s−1) (1010) (eV-s) at ncutoff at nmax sum

90 2.2 0.05 3.70 1.50 × 109 4.03× 1010

90 2.2 0.06 2.21 1.08 × 102 3.97× 103

90 2.2 0.07 1.67 1.19 × 10−2 5.74× 10−1

90 2.2 0.08 1.41 4.86 × 10−5 2.93× 10−3

90 2.2 0.09 1.26 1.41 × 10−6 1.06× 10−4

120 4.0 0.06 7.44 4.37 × 1018 1.00× 1020

120 4.0 0.07 3.80 1.94 × 109 5.83× 1010

120 4.0 0.08 2.54 4.40 × 103 1.67× 105

120 4.0 0.09 1.95 1.02 × 100 4.76× 101

120 4.0 0.10 1.64 3.57 × 10−3 2.00× 10−1



43

We learn from above that in order to reduce rapid growth during transition crossing,

we can blowup the bunch area to a certain extent before crossing and/or increase the rate of

acceleration near transition. A possible cure for microwave instability is to pass through the

transition energy fast with a transition jump, which has been used successfully at the CERN

PS. Numerical simulations provide a very valuable means of studying microwave blowup

during transition crossing. However, the higher frequency components of the beam must be

included in order to validate the simulations.

Figure 19: Plots showing the critical negative-mass parameter c as a function of bunch area.
Negative-mass blowup occurs when c � 1. Left: the Fermilab Main Ring bunches with Nb =
2.2 × 1010 and 4.0 × 1010 protons, while the ramp rate across transition is γ̇t = 90.0 s−1. Right:
the Fermilab Main Injector bunches with Nb = 4.0 × 1010 and 6.0 × 1010 protons, while the ramp
rate across transition is γ̇t = 160.1 s−1.

10 Mode Coupling

The dispersion relations we studied in the previous sections for transverse and longitu-

dinal instabilities are designed for a coasting beam, where the revolution harmonic n is a

good eigennumber classifying the perturbed distributions. They may still be applicable to a

bunch which is much longer than the wavelength of the driving force. A short bunch beam,

on the other hand, cannot be described by the revolution harmonic, because synchrotron

oscillation can no longer be neglected. Now the azimuthal mode number m provides a good

description of the collective bunch motion:∗ mode m = 1 describes a slightly off-center

bunch with the unperturbed bunch subtracted, mode m = 2 describes the perturbed motion

∗There should also be a radial eigennumber nr, which we neglect here, denoting the number of nodes
radially.



44

of a bunch slightly mismatched to the rf bucket with the uperturbed bunch subtracted, etc.

These are the synchrotron sidebands depicted in Fig. 8 when the bunch is small and when

the perturbative impedance is small.

The dipole betatron oscillation of a small bunch is described by betatron sidebands

depicted in Fig. 6. On top of the betatron motion, the bunch can also perform synchrotron

motion in the longitudinal phase space. This gives rise to synchrotron sidebands on both

sides of the synchrotron lines and the collective motion of the bunch motion. Thus the

different collective transverse motions of the bunch are also classified by azimuthal mode

number m. For example, mode m = 0 is the rigid dipole mode where all beam particles are

oscillating transversely in phase, mode† m = ±1 describes head and tail oscillating differently

leaving a node at the center of the linear density, and in general mode m has m nodes along

the linear density.

When the beam intensity is small, the effect of wakefields on the bunch particles is

small. These azimuthal modes are all separated by the synchrotron frequency ωs. As the

beam intensity increases, the effect of wakefields become more evident. When the whole

bunch has an offset from the axis of the beam pipe, the bunch is attracted further towards

the wall of the beam pipe by its image charges, and its betatron frequency therefore becomes

smaller. Thus, we expect to see the rigid dipole mode m = 0 to decrease with increasing

intensity while all other modes are not much affected. Thus, for small impedance, the

azimuthal mode number m remains a good eigennumber and the bunch is stable. When the

bunch intensity is so strong that the m = 0 has its frequency decreased by ωs, the two modes

m = 0 and −1 merge together as illustrated in the air-bag model in the left plot of Fig. 20.

At this moment, the azimuthal mode number m will not be able to describe the new bunch

motion. Two new modes may result‡ with complex frequencies: one is stable and the other

unstable. This the so-called transverse mode-coupling instability, which was first observed at

the DESY PETRA and later also at the SLAC PEP and the CERN LEP. It is also known as

the strong head-tail instability, and is one of the cleanest instabilities to observe in electron

storage rings, but has never been observed in hadron rings.

An estimate of the stability threshold can be obtained by requiring that the dipole

coherent betatron frequency shift is less than ωs, or

∣∣Z⊥
1

∣∣
eff

� 2EωβωsτL

eI0c
, (10.1)

where τL is the full bunch length, I0 is the average bunch current, and the effective transverse

†We need both the upper and lower synchrotron sidebands here because they are flanking the betatron
lines and not the revolution harmonics. The symmetry about zero frequency is lost.

‡Re Z⊥
1 is required for the two modes to merge and become complex. If there Re Z⊥

1 = 0, the two modes
just cross each other and the beam remains stable.
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Figure 20: Left: Transverse mode frequencies (ω−ωβ)/ωs versus the current parameter for an air-
bag bunch distribution. Right: Longitudinal mode frequencies ω/ωs versus the current parameter
for a parabolic bunch distribution. The perturbation is a broadband impedance and the bunch is
so short that all modes m ≥ 1 sample the capacitive part of the impedance. The dashed curves are
the imaginary part of the mode frequencies or growth/damping rates for the two colliding modes.

impedance is the transverse impedance averaged over the power spectrum h(ω) of the m = 0

mode:

∣∣Z⊥
1

∣∣
eff

=

∫
dωZ⊥

1 (ω)h(ω)∫
dωh(ω)

. (10.2)

Similar longitudinal mode-coupling instabilities are also possible. An illustration of an

electron bunch in the parabolic distribution is shown in the right plot§ of Fig. 20. Here, the

impedance is assumed to be broadband and the bunch is so short that all its azimuthal modes,

with the possible exception of m = 1, have frequencies higher than the broadband resonance

peak. As a result, all the azimuthal modes, with the possible exception of m = 1, sample the

capacitive part of the impedance and have their frequencies shifted downward, remembering

that the operation of the electron ring is above transition. Mode m = 1 is a special mode, it

depicts the rigid-bunch oscillation and is not affected by the reactive impedance, at least at

low beam intensity. Physically, the center of the bunch does not see any change in the field

pattern induced by the reactive impedance when the bunch motion is rigid. Mathematically,

there is a static potential-distortion shift which cancels the dynamic shift. Thus, when the

§Here we need to consider only upper synchrotron sidebands because the lower sidebands will lead to
exactly the same physics as discussed earlier in Sec. 4.
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intensity of the bunch is low, all the azimuthal modes are separated by the synchrotron

frequency ωs. As the beam intensity increases, mode m = 2 is shifted downward while mode

m = 1 is essentially unchanged. When the beam intensity is high enough, these two modes

merge to form two new states with complex frequencies and instability starts.¶

If the bunch is long, like a proton bunch in the Fermilab Main Ring, because the

wavelength of the perturbing broadband resonance is much shorter than the bunch length,

some higher azimuthal modes, like m = 6 and 7 in Fig. 21 will be the first to merge. Again

Figure 21: Longitudinal mode frequencies ω/ωs versus the current parameter for a long proton
bunch of total length τL in the Fermilab Main Ring below transition. The impedance is a broadband
resonance with Q = 1 at ωr/(2π) = 1.88 GHz, or ωrτL/π = 7.5. Since azimuthal modes m = 6 and
7 peak at, respectively, ωmτL/π ≈ 7 and 8, these two modes collide first. Since the width of the
resonance encompasses modes 4 to 9, collisions are seen for modes 4 and 5 as well as modes 8 and
9. For long bunches, usually many modes will collide after the first collision.

an estimate of the stability threshold can be obtained by requiring the coherent frequency

shift of an azimuthal mode in the parabolic distribution to be less than ωs:∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣
eff

� 3β2Eω2
sτ

3
L

4π2eIbη
, (10.3)

¶Nonzero Re Z‖
0 is also required to produce complex frequencies.
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where the effective longitudinal impedance for mode m is defined as

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣
eff

=

∫
dω
Z

‖
0(ω)

ω
h(ω)∫

dωh(ω)

. (10.4)

It is very informative to understand the mechanism of the mode-coupling instabilities

in the two-particle model.‖[14] First, let us consider the situation when there is no external

transverse focusing nor longitudinal focusing. If the head particle has a deviation from the

axis of the beam pipe, it leaves a transverse wake so that the tail particle will be kicked

transversely all the time. The result is a banana-tilted bunch with the tail curling sideway

more and more until it hits the beam pipe. With external transverse focusing but without

longitudinal focusing, a slightly off-axis head particle will perform betatron oscillation. The

wake generated will force the tail to oscillate with the same betatron frequency with its

amplitude increasing linearly until the tail hits the beam pipe. We see that the tail of the

bunch will always be unstable transversely.

The picture becomes completely different when we turn on longitudinal focusing, because

the particles exchange their head and tail positions. For example, particle 1 at the head will

drive particle 2 at the tail with a linear rise in betatron amplitude for half a synchrotron

period, during which particle 1 leads particle 2 in betatron phase by 90◦. During the second

half of the synchrotron period, particle 2 is at the head position and particle 1 is at the tail

position. However, the phase relationship of the two particles has not been changed and

particle 2 still lags particle 1 by 90◦. Thus particle 2 is forced-damping particle 1 instead.

If the wake is strong enough or the half synchrotron period is long enough, eventually the

betatron amplitude of particle 1 will be damped to zero and start growing again with its

betatron phase now lags that of particle 2 by 90◦. Unlike a linac where the particle at the tail

is driven to grow continuously by the particle at the head, here as the longitudinal positions

of the two particles are exchanged, the new tail-particle will be damped to zero first before

its amplitude is driven to grow. As a result, if the driving force from the wake is not large

enough and/or the synchrotron period is not long enough, there can be no accumulation in

amplitude growth and the two-particle bunch remains stable. A stability condition is such

that both particles have the same betatron amplitudes ŷ at the end of each half synchrotron

period with the particle at the tail lagging the particle at the head by 90◦. Since the driving

force of the head particle needs to damp the tail particle from amplitude ŷ to zero first and

then drive it to ŷ again, the total growth in amplitude, including the damping plus growing

portions, for each half synchrotron period should be equal to 2ŷ.

‖The bunch with NB particles is represented by two macroparticles each carrying charge 1
2eNB.
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By letting ε → 0 in Eq. (6.3), the amplitude of the driven tail particle after half a

synchrotron period t = π/ωs is

ŷt =
F̂

2ωβ

π

ωs
. (10.5)

where from the definition of the transverse wake in Eq. (1.3) the wake force averaged over

the circumference C of the accelerator ring is

F̂ =
e2NBW0c

2

2EC
ŷh . (10.6)

In above the charge of each macroparticle is 1
2
eNB where NB is the number of particles in

the bunch, E is the beam mean energy, W1 = −W0 < 0 is the transverse wake experienced

by the tail particle and is assumed constant for the length of the bunch. Since we require the

total growth of the amplitude of the tail ŷt, the damped portion plus the growth portion, to

be twice the amplitude of the head ŷh, we arrive at the stability condition

Υ =
πe2NBW0c

2

4ECωβωs
≤ 2 , (10.7)

which agrees very well with Υ � 1.8 for the air-bag model shown in left plot of Fig. 20. The

result also agrees up to a factor of 2 with the estimate of Eq. (10.1), noting that in this

constant-wake model Z⊥
1 = −W0/(ω− jε) where ε is an infinitely small positive number and

Z⊥
1 |eff = jW0h(0)/

∫
h(ω)dω = j4W0τL/π

2 because the normalization of the power spectrum

h(ω).

11 Head-Tail Instability

We learn from the previous section that a bunch will not be unstable transversely in

the presence of a broadband impedance when the beam current is not too large. The main

reason is that, as the head and tail particles exchange positions, the new head mostly lags

the new tail in betatron phase by 90◦. Thus the tail will be damped for some time first

before it starts to grow again. For this reason, there is a threshold for this strong head-tail

instability, below which the beam is stable.

The above analysis is made when the chromaticity is zero. In the presence of a nonzero

chromaticity, we will see below that under some condition the head of the bunch always leads

the tail in betatron phase by less than 180◦. Thus the bunch can become unstable without

any threshold, aside from any damping mechanism like tune spread and mechanical damper.

Figure 22 shows a particle synchrotron motion in the longitudinal phase space below

transition with positive chromaticity (ξ > 0). Starting at the head, the momentum offset
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∆ν  > 0β

∆ν  < 0β

Chromaticity ξ > 0

τ
tail head τ

Figure 22: Schematic drawings showing betatron oscillation phase slipping from head to tail when
chromaticity is positive (ξ > 0) and below transition (η < 0).

becomes negative, the particle betatron tune decreases, and its betatron phase φβ slips. This

slipping accumulates and reaches a maximum when the particle arrives at the tail. After

that, because the momentum offset becomes positive, the betatron tune increases and φβ
regains its former slippage when it arrives at the head again.

Let us study this instability in the two-particle model. The first row of Fig. 23 shows

the location of the two particles in longitudinal phase space below transition at start, 1
4

synchrotron period, 1
2

synchrotron period, and 3
4

synchrotron period. The next two rows

are for the σ-mode where the two particles are in phase at start. At 1
4

synchrotron period,

particle 1 (red) is at the head and particle 2 (green) at the tail. Because particle 1 has been

at higher energy than particle 2, particle 1 now leads/lags particle 2 if the chromaticity is

positive/negative. Thus, particle 1 can forced-drive/forced damped particle 2. In the next
1
4

synchrotron period, particle 2 slips forward/backward in betatron phase because it is at a

higher energy while particle 1 slips backward/forward in betatron phase because its energy

is less, so that they are again in phase at 1
2

synchrotron period. In the next 1
4

synchrotron

period, particle 2 continues to slip forward/backward in betatron phase because it is at a

higher energy while particle 1 continues to slip backward/forward in betatron phase because

its energy is less. At 3
4

synchrotron period, particle 2 reaches the head position while particle 1

reaches the tail position. Now particle 2 leads/lags particle 1 and can drive the amplitude

of particle 1 to grow/damp. Thus this σ-mode is unstable/unstable below transition when

the chromaticity is positive/negative.

There π-mode, where the two particles are 180◦ out of phase at start, is treated in

the lower part of Fig. 23. Following their motion in a synchrotron period, this mode is

found stable/unstable below transition when the chromaticity is positive/negative. Above

transition, because the particles move in the opposite direction in the longitudinal phase

space, reverse conclusions are obtained. The results are summarized in Table IV. This is
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Figure 23: (color) Analysis of chromaticity-driven head-tail instabilities below transition in the
two-particle model. First row shows the positions and motion of the two particles (red for 1
and green for 2) in the longitudinal phase space. Below are the analysis of their betatron phase
relationship in the σ or rigid-dipole mode where the two particles are in phase, and the π-mode
where the two particles are 180◦ out of phase.
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Table IV: The chromaticity-driven head-tail stabilities and instabilities of
the σ- and π-modes in the two-particle model.

σ-mode π-mode

ξ > 0 ξ < 0 ξ > 0 ξ < 0

Below transition η < 0 unstable stable stable unstable

Above transition η > 0 stable unstable unstable stable

known as chromaticity-driven instability which occurs without a threshold. [15, 16]

In the two-particle model with a constant transverse wake, the growth or damping rate

is given by
1

τ
=
e2NBW0c

2τ̂

2πEC|η| , (11.1)

where τ̂ is the half bunch length. We see that under any condition, below or above transition,

positive or negative chromaticity, the sum of the growth rates of the σ- and π-modes is zero.

Actually this sum rule remains true in a multiparticle bunch where there are many modes.

In general, the growth or damping rate of the σ or rigid-dipole mode is much larger than

the growth or damping rates of all other higher modes.

It can be shown that, compared with the synchronous particle, the betatron phase lead

or lag at a certain longitudinal position of the bunch is proportional to the distance in time

τ from the center of the bunch. In fact,

∆φβ = −ξω0
η
τ = −ωξτ , (11.2)

where η is the frequency slip factor. Thus this phase shift can be considered as a shift in the

spectra of the bunch by the frequency ωξ. The latter is called betatron-frequency-shift due

to chromaticity.

Below/above transition, a negative/positive chromaticity implies shifting the bunch

spectra to the right (positive frequency). We see in Fig. 24 that the rigid dipole mode

(m = 0) samples the resistive-wall impedance more on the ω > 0 side than the ω < 0 side.

Thus this mode is stable. However, the m = 1 now samples more on the ω < 0 side than

the ω > 0 side and becomes unstable. This is the so-called π-mode where the head and the

tail are 180◦ out of phase. To damp this mode a quadrupole damper is required. The higher

modes (not shown) are also unstable. These higher modes have a number of nodes along

the bunch and cannot be damped with a damper. However, the growth rates of the higher

order modes are relatively slower. The usual operation employs a small negative chromatic-

ity (positive above transition) so that the dominant dipole mode (m = 0) is stable. The

higher modes, although unstable, will be Landau damped by a small spread in the betatron
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Figure 24: Negative/positive chromaticity below/above transition shifts the all modes of excitation
towards the positive frequency side by ωξ. Mode m = 0 becomes stable, but mode m = 1 may be
unstable because it samples more negative ReZ⊥

1 than positive ReZ⊥
1 .

tune. Another way is to employ a small positive chromaticity (negative above transition),

so that the dipole mode (m = 0) becomes slightly unstable while all the higher order modes

are stable. The rigid dipole mode is the one in which all particles are executing betatron

oscillation in phase. This mode can easily be damped with a damper.

Head-tail modes of oscillations can be excited by shifting the chromaticity to the unstable

direction and observed using a wideband pickup. These modes were first observed in the

CERN PS Booster [17] and depicted in Fig. 25.

12 COUPLED-BUNCH INSTABILTIES

When the wake does not decay within the bunch spacing, bunches talk to each other.

Assuming M bunches of equal intensity equally spaced in the accelerator ring, there are

µ = 0, 1, · · · , M−1 modes of oscillations in which the center-of-mass of a bunch leads∗

its predecessor by the phase 2πµ/M . In addition, an individual bunch in the µth coupled-

bunch mode can oscillate in the synchrotron phase space about its center-of-mass in the

mth azimuthal mode with 2m = 2, 4, · · · azimuthal nodes† in the perturbed longitudinal

phase-space distribution. Of course, there will be in addition radial modes of oscillation in

∗We can also formulate the problem by having the bunch lag its predecessor by the phase 2πµ′/M in the
µ′th coupling mode. Then mode µ′ will be exactly the same as mode M−µ discussed in the text.

†For example, the dipole mode m = 1 can be written as ∼ cosφ, which has two nodes φ = ±π/2.
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Figure 25: small A single bunch in the CERN PS Booster monitored in about 20 consecutive

revolutions with a wideband pickup (bandwidth ∼ 150 MHz). Vertical axis: difference

pickup signal. Horizontal axis: time (50 ns per division). The azimuthal mode number and

chromaticity in each plot are as labeled.

the perturbed distribution.

The long-range longitudinal wake can drive longitudinal coupled-bunches instability,

while the long-range transverse wake can drive transverse coupled-bunch instability. The

source of the long-range driving force is usably sharp parasitic resonances in the rf cavities.

However, the most serious transverse coupled-bunch instability that occurs in nearly all

storage rings is the one driven by the resistive wall [18]. Since‡ Re Z⊥
1 ∝ ω−1/2 and is

positive (negative) when the angular frequency ω is positive (negative), the betatron line at

the lowest negative frequency acts like a narrow resonance and drives transverse coupled-

bunch instabilities. Take, for example, the Fermilab Tevatron in the fixed-target mode,

where there are M = 1113 equally spaced bunches. The betatron tune is νβ = 19.6. The

‡Here, we assume that the wall is thicker than one skin depth at revolution frequency. Otherwise,
Re Z⊥

1 ∝ ω−1.
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Figure 26: The −0.4ω0 betatron line in the Tevatron dominates over all other betatron lines for
the µ = 1093 mode coupled-bunch instability driven by the resistive wall impedance.

lowest-negative-betatron-frequency line is at (qM+µ)ω0 + ωβ = −0.4ω0, for mode µ = 1093

and q = −1. The closest damped betatron line§ (q = 0) is at (1113−0.4)ω0, but Re Z⊥
1 is

only −√0.4/1112.6 the value at −0.4ω0. The next anti-damped betatron line (q = −2) is

at −1113.4ω0, with Re Z⊥
1 equal to

√
0.4/1113.4 the value at −0.4ω0. This is illustrated in

Fig. 26. Thus, it is the −0.4ω0 betatron line that dominates. The growth rate for this mode

can be written as

1

τmµ
≈ − 1

1+m

eMIbc

4πνβE0
ReZ⊥

1 (ωq)F
′
m(ωqτL − χ) , (12.1)

where χ = ωξτL and the form factor is

F ′
m(ωτL) =

2πhm(ω)

τL

∫ ∞

−∞
hm(ω)dω

, (12.2)

where hm(ω) is the power spectrum of the azimuthal mode m. For zero chromaticity, only

the m = 0 mode can be unstable because the power spectra for all the m �= 0 modes are

nearly zero near zero frequency. Since the perturbing betatron line is at extremely low

frequency, we can evaluate the form factor at zero frequency. For the sinusoidal modes, we

get F ′
0(0) = 8/π2 = 0.811.

One method to make this coupled-bunch mode less unstable or even stable is by intro-

ducing positive chromaticity when the machine is above transition. For the Tevatron with

§When we have exact symmetry of M bunches, for each mode, we do not have the betatron lines flanking
each revolution harmonic. They only appear for every Mth harmonic.
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slip factor η = 0.0028, total bunch length τL = 5 ns, and revolution frequency f0 = 47.7 kHz,

a chromaticity of ξ = +10 will shift the spectra by the amount χ = ωξτL = 2πf0ξτL/η = 5.4.

The form factor and thus the growth rate is reduced by more than 4 times. However, from

Fig. 24, the spectra are shifted by ωξτL/π = 1.7 and the m = 1 mode becomes unstable.

Another method for damping the instability is to introduce a betatron angular frequency

spread using octupoles, with the spread larger than the growth rate. A third method is to

employ a mode damper. One can also reduce the resistive-wall impedance by coating the

walls of the beam pipe with a layer of copper, whose conductivity at cryogenic temperature

is very much larger than the conductivity of stainless steel.

When all the h = 1113 rf buckets are filled with 6 × 1010 protons each in one scenario

of the Tevatron in the fixed-target mode, the average total current is MIb = 0.511 A. The

vertical resistive-wall impedance has a real part Re Z⊥
1 = 43.74 MΩ/m at the revolution

harmonic. Thus, at −0.4ω0, it becomes Re Z⊥
1 = −69.16 MΩ/m. At the injection energy of

E0 = 150 GeV and zero chromaticity, the transverse coupled-bunch growth rate driven by the

resistive-wall impedance is τ−1
µ = 232 s−1 and the growth time is 4.30 ms or 204 revolution

turns. The mean radius of the Tevatron ring is R = 1 km. In fact, this growth time is more

or less the same for all accelerator rings [19]. For example, preceding the Tevatron, there

are the Main Injector and the Booster. All of them have the same 53-MHz rf. The Main

Injector has 588 rf buckets and the Booster has 84 rf buckets. First, if all the buckets of each

ring are filled, the average total current MIb should be the same for all the 3 rings. Second,

the beam energy E0 scales as the size of the ring or the mean radius R and betatron tune

νβ scales as
√
R. Third, the resistive-wall impedance, as given by

Z⊥
1 (ω) = [1 + j sgn(ω)]

2Rcρ

ωb3δskin
(12.3)

in Eq. (2.23), where b is the beam pipe radius, δskin is the skin depth, and ρ is the resistivity,

scales as R3/2 because the revolution frequency scales as R−1. Substituting into Eq. (12.1),

we find that the growth rate turns out to be independent of the size of the ring. Of course,

usually there are differences in the vacuum chamber, and number of particles per bunch, and

also the residual betatron tune. However, it is safe to say that the growth time of transverse

couple-bunch instability for every completely filled accelerator ring should be of the order

of a few to a few tens of milliseconds. Although the growth time is independent of the size

of the ring, the growth time in turn number is inversely proportional to the size of the ring.

Thus, for the Very Large Hadron Collider (VLHC) under consideration with a circumference

of 233 km, the growth time will be only 5.5 revolution turns according to this scaling and

assuming the residual tune to be 1
2
. For this reason, large machines will require powerful

feedback systems, for example, criss-crossing feedback and/or one-turn correction scheme.

There is no counterpart for the longitudinal resistive-wall impedance. This is because
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the amplitude of the mth synchrotron sideband flanking the zero harmonic is, according to

Eq. (4.3), proportional to Jm(nω0τ̂), which is exactly zero when n = 1. (see Fig. 8).
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